Learning to Classify Text Using Support Vector Machines: The Springer International Series in Engineering and Computer Science, cartea 668
Autor Thorsten Joachimsen Limba Engleză Hardback – 30 apr 2002
Learning To Classify Text Using Support Vector Machines gives a complete and detailed description of the SVM approach to learning text classifiers, including training algorithms, transductive text classification, efficient performance estimation, and a statistical learning model of text classification. In addition, it includes an overview of the field of text classification, making it self-contained even for newcomers to the field. This book gives a concise introduction to SVMs for pattern recognition, and it includes a detailed description of how to formulate text-classification tasks for machine learning.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 642.19 lei 6-8 săpt. | |
Springer Us – noi 2012 | 642.19 lei 6-8 săpt. | |
Hardback (1) | 647.28 lei 6-8 săpt. | |
Springer Us – 30 apr 2002 | 647.28 lei 6-8 săpt. |
Din seria The Springer International Series in Engineering and Computer Science
- 24% Preț: 1041.97 lei
- 20% Preț: 643.50 lei
- 18% Preț: 1225.62 lei
- 18% Preț: 965.02 lei
- 20% Preț: 646.12 lei
- 18% Preț: 948.79 lei
- 20% Preț: 646.62 lei
- 15% Preț: 637.46 lei
- 20% Preț: 643.83 lei
- 18% Preț: 949.23 lei
- 20% Preț: 644.48 lei
- 20% Preț: 994.92 lei
- 20% Preț: 645.97 lei
- 18% Preț: 946.87 lei
- 20% Preț: 995.57 lei
- 18% Preț: 956.99 lei
- 20% Preț: 644.98 lei
- 15% Preț: 649.54 lei
- 18% Preț: 950.21 lei
- 18% Preț: 1221.38 lei
- 18% Preț: 957.62 lei
- 15% Preț: 643.99 lei
- 18% Preț: 948.47 lei
- 18% Preț: 947.35 lei
- 20% Preț: 1284.65 lei
- 20% Preț: 1628.31 lei
- 20% Preț: 1285.78 lei
Preț: 647.28 lei
Preț vechi: 809.10 lei
-20% Nou
Puncte Express: 971
Preț estimativ în valută:
123.85€ • 129.66$ • 102.48£
123.85€ • 129.66$ • 102.48£
Carte tipărită la comandă
Livrare economică 05-19 aprilie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780792376798
ISBN-10: 079237679X
Pagini: 205
Ilustrații: XVII, 205 p.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.47 kg
Ediția:2002
Editura: Springer Us
Colecția Springer
Seria The Springer International Series in Engineering and Computer Science
Locul publicării:New York, NY, United States
ISBN-10: 079237679X
Pagini: 205
Ilustrații: XVII, 205 p.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.47 kg
Ediția:2002
Editura: Springer Us
Colecția Springer
Seria The Springer International Series in Engineering and Computer Science
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1. Introduction.- 1 Challenges.- 2 Goals.- 3 Overview and Structure of the Argument.- 4 Summary.- 2. Text Classification.- 1 Learning Task.- 2 Representing Text.- 3 Feature Selection.- 4 Term Weighting.- 5 Conventional Learning Methods.- 6 Performance Measures.- 7 Experimental Setup.- 3. Support Vector Machines.- 1 Linear Hard-Margin SVMs.- 2 Soft-Margin SVMs.- 3 Non-Linear SVMs.- 4 Asymmetric Misclassification Cost.- 5 Other Maximum-Margin Methods.- 6 Further Work and Further Information.- Theory.- 4. A Statistical Learning Model of text Classification for SVMs.- 5. Efficient Performance Estimators for SVMs.- Methods.- 6. Inductive Text Classification.- 7. Transductive Text Classification.- Algorithms.- 8. Training Inductive Support Vector Machines.- 9. Training Transductive Support Vector Machines.- 10. Conclusions.- Appendices.- SVM-Light Commands and Options.