Learning with Partially Labeled and Interdependent Data
Autor Massih-Reza Amini, Nicolas Usunieren Limba Engleză Hardback – 21 mai 2015
The book traces how the semi-supervised paradigm and the learning to rank paradigm emerged from new web applications, leading to a massive production of heterogeneous textual data. It explains how semi-supervised learning techniques are widely used, but only allow a limited analysis of the information content and thus do not meet the demands of many web-related tasks.
Later chapters deal with the development of learning methods for ranking entities in a large collection with respect to precise information needed. In some cases, learning a ranking function can be reduced to learning a classification function over the pairs of examples. The book proves that this task can be efficiently tackled in a new framework: learning with interdependent data.
Researchers and professionals in machine learning will find these new perspectives and solutions valuable. Learning with Partially Labeled and Interdependent Data is also useful for advanced-level students of computer science, particularly those focused on statistics and learning.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 323.80 lei 6-8 săpt. | |
Springer International Publishing – 9 oct 2016 | 323.80 lei 6-8 săpt. | |
Hardback (1) | 329.91 lei 6-8 săpt. | |
Springer International Publishing – 21 mai 2015 | 329.91 lei 6-8 săpt. |
Preț: 329.91 lei
Preț vechi: 412.39 lei
-20% Nou
Puncte Express: 495
Preț estimativ în valută:
63.14€ • 65.14$ • 53.44£
63.14€ • 65.14$ • 53.44£
Carte tipărită la comandă
Livrare economică 04-18 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783319157252
ISBN-10: 3319157256
Pagini: 114
Ilustrații: XIII, 106 p. 12 illus.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.35 kg
Ediția:2015
Editura: Springer International Publishing
Colecția Springer
Locul publicării:Cham, Switzerland
ISBN-10: 3319157256
Pagini: 114
Ilustrații: XIII, 106 p. 12 illus.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.35 kg
Ediția:2015
Editura: Springer International Publishing
Colecția Springer
Locul publicării:Cham, Switzerland
Public țintă
ResearchCuprins
Introduction.- Introduction to learning theory.- Semi-supervised learning.- Learning with interdependent data.
Caracteristici
Presents an overview of statistical learning theory Analyzes two machine learning frameworks, semi-supervised learning with partially labeled data and learning with interdependent data Outlines how these frameworks can support emerging machine learning applications Includes supplementary material: sn.pub/extras