Limit Theorems on Large Deviations for Markov Stochastic Processes: Mathematics and its Applications, cartea 38
Autor A.D. Wentzellen Limba Engleză Hardback – 31 oct 1990
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 382.36 lei 6-8 săpt. | |
SPRINGER NETHERLANDS – 22 aug 2012 | 382.36 lei 6-8 săpt. | |
Hardback (1) | 389.88 lei 6-8 săpt. | |
SPRINGER NETHERLANDS – 31 oct 1990 | 389.88 lei 6-8 săpt. |
Din seria Mathematics and its Applications
- Preț: 483.29 lei
- Preț: 367.83 lei
- Preț: 381.89 lei
- Preț: 435.17 lei
- 23% Preț: 321.52 lei
- 20% Preț: 371.26 lei
- Preț: 432.50 lei
- 22% Preț: 321.53 lei
- Preț: 435.39 lei
- 15% Preț: 459.13 lei
- Preț: 427.71 lei
- 12% Preț: 351.91 lei
- 22% Preț: 333.11 lei
- Preț: 356.63 lei
- 18% Preț: 1125.42 lei
- Preț: 392.97 lei
- 15% Preț: 651.67 lei
- 15% Preț: 642.83 lei
- 15% Preț: 647.59 lei
- 15% Preț: 647.59 lei
- Preț: 389.49 lei
- Preț: 394.12 lei
- 15% Preț: 652.17 lei
- 20% Preț: 651.57 lei
- 15% Preț: 650.19 lei
- Preț: 382.36 lei
- Preț: 392.97 lei
- 15% Preț: 657.39 lei
- 15% Preț: 658.37 lei
- Preț: 394.29 lei
Preț: 389.88 lei
Nou
Puncte Express: 585
Preț estimativ în valută:
74.64€ • 76.80$ • 62.92£
74.64€ • 76.80$ • 62.92£
Carte tipărită la comandă
Livrare economică 01-15 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780792301431
ISBN-10: 0792301439
Pagini: 176
Ilustrații: XVI, 176 p.
Dimensiuni: 156 x 234 x 13 mm
Greutate: 0.46 kg
Ediția:1990
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and its Applications
Locul publicării:Dordrecht, Netherlands
ISBN-10: 0792301439
Pagini: 176
Ilustrații: XVI, 176 p.
Dimensiuni: 156 x 234 x 13 mm
Greutate: 0.46 kg
Ediția:1990
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and its Applications
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
0.1 Problems on large deviations for stochastic processes.- 0.2 Two opposite types of behaviour of probabilities of large deviations.- 0.3 Rough theorems on large deviations; the action functional.- 0.4 Survey of work on large deviations for stochastic processes.- 0.5 The scheme for obtaining rough theorems on large deviations.- 0.6 The expression: k (?) S (?) is the action functional uniformly over a specified class of initial points.- 0.7 Chapters 3 – 6: a survey.- 0.8 Numbering.- 1. General Notions, Notation, Auxiliary Results.- 1.1. General notation. Legendre transformation.- 1.2. Compensators. Lévy measures.- 1.3. Compensating operators of Markov processes.- 2. Estimates Associated with the Action Functional for Markov Processes.- 2.1. The action functional.- 2.2. Derivation of the lower estimate for the probability of passing through a tube.- 2.3. Derivation of the upper estimate for the probability of going far from the sets$$ {{\Phi }_{{{{x}_{0}};\left[ {0,T} \right]}}}\left( i \right),{{\bar{\Phi }}_{{{{x}_{0}};\left[ {0,T} \right]}}}\left( i \right) $$.- 2.4. The truncated action functional and the estimates associated with it.- 3. The Action Functional for Families of Markov Processes.- 3.1. The properties of the functional$$ {{S}_{{{{T}_{1}},{{T}_{2}}}}}\left( \phi \right) $$.- 3.2. Theorems on the action functional for families of Markov processes in Rr. The case of finite exponential moments.- 3.3. Transition to manifolds. Action functional theorems associated with truncated cumulants.- 4. Special Cases.- 4.1. Conditions A – E of § 3.1. – § 3.3.- 4.2. Patterns of processes with frequent small jumps. The cases of very large deviations, not very large deviations, and super-large deviations.- 4.3. The case of very large deviations.- 4.4. Thecase of not very large deviations.- 4.5. Some other patterns of not very large deviations.- 4.6. The case of super-large deviations.- 5. Precise Asymptotics for Large Deviations.- 5.1. The case of the Wiener process.- 5.2. Processes with frequent small jumps.- 6. Asymptotics of the Probability of Large Deviations Due to Large Jumps of a Markov Process.- 6.1. Conditions imposed on the family of processes. Auxiliary results.- 6.2. Main theorems.- 6.3. Applications to sums of independent random variables.- References.