Cantitate/Preț
Produs

Limit Theorems on Large Deviations for Markov Stochastic Processes: Mathematics and its Applications, cartea 38

Autor A.D. Wentzell
en Limba Engleză Hardback – 31 oct 1990

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 38236 lei  6-8 săpt.
  SPRINGER NETHERLANDS – 22 aug 2012 38236 lei  6-8 săpt.
Hardback (1) 38988 lei  6-8 săpt.
  SPRINGER NETHERLANDS – 31 oct 1990 38988 lei  6-8 săpt.

Din seria Mathematics and its Applications

Preț: 38988 lei

Nou

Puncte Express: 585

Preț estimativ în valută:
7464 7680$ 6292£

Carte tipărită la comandă

Livrare economică 01-15 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780792301431
ISBN-10: 0792301439
Pagini: 176
Ilustrații: XVI, 176 p.
Dimensiuni: 156 x 234 x 13 mm
Greutate: 0.46 kg
Ediția:1990
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and its Applications

Locul publicării:Dordrecht, Netherlands

Public țintă

Research

Cuprins

0.1 Problems on large deviations for stochastic processes.- 0.2 Two opposite types of behaviour of probabilities of large deviations.- 0.3 Rough theorems on large deviations; the action functional.- 0.4 Survey of work on large deviations for stochastic processes.- 0.5 The scheme for obtaining rough theorems on large deviations.- 0.6 The expression: k (?) S (?) is the action functional uniformly over a specified class of initial points.- 0.7 Chapters 3 – 6: a survey.- 0.8 Numbering.- 1. General Notions, Notation, Auxiliary Results.- 1.1. General notation. Legendre transformation.- 1.2. Compensators. Lévy measures.- 1.3. Compensating operators of Markov processes.- 2. Estimates Associated with the Action Functional for Markov Processes.- 2.1. The action functional.- 2.2. Derivation of the lower estimate for the probability of passing through a tube.- 2.3. Derivation of the upper estimate for the probability of going far from the sets$$ {{\Phi }_{{{{x}_{0}};\left[ {0,T} \right]}}}\left( i \right),{{\bar{\Phi }}_{{{{x}_{0}};\left[ {0,T} \right]}}}\left( i \right) $$.- 2.4. The truncated action functional and the estimates associated with it.- 3. The Action Functional for Families of Markov Processes.- 3.1. The properties of the functional$$ {{S}_{{{{T}_{1}},{{T}_{2}}}}}\left( \phi \right) $$.- 3.2. Theorems on the action functional for families of Markov processes in Rr. The case of finite exponential moments.- 3.3. Transition to manifolds. Action functional theorems associated with truncated cumulants.- 4. Special Cases.- 4.1. Conditions A – E of § 3.1. – § 3.3.- 4.2. Patterns of processes with frequent small jumps. The cases of very large deviations, not very large deviations, and super-large deviations.- 4.3. The case of very large deviations.- 4.4. Thecase of not very large deviations.- 4.5. Some other patterns of not very large deviations.- 4.6. The case of super-large deviations.- 5. Precise Asymptotics for Large Deviations.- 5.1. The case of the Wiener process.- 5.2. Processes with frequent small jumps.- 6. Asymptotics of the Probability of Large Deviations Due to Large Jumps of a Markov Process.- 6.1. Conditions imposed on the family of processes. Auxiliary results.- 6.2. Main theorems.- 6.3. Applications to sums of independent random variables.- References.