Linear Algebra: Undergraduate Texts in Mathematics
Autor Klaus Jänichen Limba Engleză Hardback – 2 sep 1994
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 483.27 lei 43-57 zile | |
Springer – 26 sep 2011 | 483.27 lei 43-57 zile | |
Hardback (1) | 489.59 lei 43-57 zile | |
Springer – 2 sep 1994 | 489.59 lei 43-57 zile |
Din seria Undergraduate Texts in Mathematics
- 17% Preț: 362.13 lei
- 17% Preț: 365.42 lei
- Preț: 290.80 lei
- Preț: 358.10 lei
- Preț: 351.54 lei
- Preț: 440.01 lei
- Preț: 433.85 lei
- Preț: 304.91 lei
- Preț: 380.26 lei
- Preț: 400.42 lei
- 17% Preț: 373.59 lei
- Preț: 372.26 lei
- Preț: 339.36 lei
- 17% Preț: 368.60 lei
- Preț: 400.42 lei
- Preț: 367.40 lei
- 15% Preț: 417.73 lei
- Preț: 257.71 lei
- 17% Preț: 395.93 lei
- Preț: 449.60 lei
- 19% Preț: 400.52 lei
- Preț: 359.48 lei
- Preț: 415.94 lei
- Preț: 407.96 lei
- Preț: 407.62 lei
- Preț: 370.77 lei
- Preț: 395.09 lei
- 17% Preț: 367.24 lei
- Preț: 402.33 lei
- Preț: 364.40 lei
- 20% Preț: 466.83 lei
- 13% Preț: 389.61 lei
- 17% Preț: 366.38 lei
- Preț: 424.14 lei
- 17% Preț: 362.67 lei
- Preț: 332.02 lei
- Preț: 298.00 lei
- Preț: 329.94 lei
- 19% Preț: 492.82 lei
- Preț: 396.24 lei
- Preț: 390.08 lei
- 15% Preț: 521.04 lei
- Preț: 402.00 lei
- 15% Preț: 531.72 lei
- 15% Preț: 447.81 lei
- 15% Preț: 533.53 lei
Preț: 489.59 lei
Nou
Puncte Express: 734
Preț estimativ în valută:
93.69€ • 97.22$ • 78.31£
93.69€ • 97.22$ • 78.31£
Carte tipărită la comandă
Livrare economică 17-31 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387941288
ISBN-10: 0387941282
Pagini: 206
Ilustrații: X, 206 p.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.47 kg
Ediția:1994
Editura: Springer
Colecția Springer
Seria Undergraduate Texts in Mathematics
Locul publicării:New York, NY, United States
ISBN-10: 0387941282
Pagini: 206
Ilustrații: X, 206 p.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.47 kg
Ediția:1994
Editura: Springer
Colecția Springer
Seria Undergraduate Texts in Mathematics
Locul publicării:New York, NY, United States
Public țintă
Lower undergraduateCuprins
1. Sets and Maps.- 1.1 Sets.- 1.2 Maps.- 1.3 Test.- 1.4 Remarks on the Literature.- 1.5 Exercises.- 2. Vector Spaces.- 2.1 Real Vector Spaces.- 2.2 Complex Numbers and Complex Vector Spaces.- 2.3 Vector Subspaces.- 2.4 Test.- 2.5 Fields.- 2.6 What Are Vectors?.- 2.7 Complex Numbers 400 Years Ago.- 2.8 Remarks on the Literature.- 2.9 Exercises.- 3. Dimension.- 3.1 Linear Independence.- 3.2 The Concept of Dimension.- 3.3 Test.- 3.4 Proof of the Basis Extension Theorem and the Exchange Lemma.- 3.5 The Vector Product.- 3.6 The “Steinitz Exchange Theorem”.- 3.7 Exercises.- 4. Linear Maps.- 4.1 Linear Maps.- 4.2 Matrices.- 4.3 Test.- 4.4 Quotient Spaces.- 4.5 Rotations and Reflections in the Plane.- 4.6 Historical Aside.- 4.7 Exercises.- 5. Matrix Calculus.- 5.1 Multiplication.- 5.2 The Rank of a Matrix.- 5.3 Elementary Transformations.- 5.4 Test.- 5.5 How Does One Invert a Matrix?.- 5.6 Rotations and Reflections (continued).- 5.7 Historical Aside.- 5.8 Exercises.- 6. Determinants.- 6.1 Determinants.- 6.2 Determination of Determinants.- 6.3 The Determinant of the Transposed Matrix.- 6.4 Determinantal Formula for the Inverse Matrix.- 6.5 Determinants and Matrix Products.- 6.6 Test.- 6.7 Determinant of an Endomorphism.- 6.8 The Leibniz Formula.- 6.9 Historical Aside.- 6.10 Exercises.- 7. Systems of Linear Equations.- 7.1 Systems of Linear Equations.- 7.2 Cramer’s Rule.- 7.3 Gaussian Elimination.- 7.4 Test.- 7.5 More on Systems of Linear Equations.- 7.6 Captured on Camera!.- 7.7 Historical Aside.- 7.8 Remarks on the Literature.- 7.9 Exercises.- 8. Euclidean Vector Spaces.- 8.1 Inner Products.- 8.2 Orthogonal Vectors.- 8.3 Orthogonal Maps.- 8.4 Groups.- 8.5 Test.- 8.6 Remarks on the Literature.- 8.7 Exercises.- 9. Eigenvalues.- 9.1 Eigenvalues and Eigenvectors.- 9.2 TheCharacteristic Polynomial.- 9.3 Test.- 9.4 Polynomials.- 9.5 Exercises.- 10. The Principal Axes Transformation.- 10.1 Self-Adjoint Endomorphisms.- 10.2 Symmetric Matrices.- 10.3 The Principal Axes Transformation for Self-Adjoint Endomorphisms.- 10.4 Test.- 10.5 Exercises.- 11. Classification of Matrices.- 11.1 What Is Meant by “Classification”?.- 11.2 The Rank Theorem.- 11.3 The Jordan Normal Form.- 11.4 More on the Principal Axes Transformation.- 11.5 The Sylvester Inertia Theorem.- 11.6 Test.- 11.7 Exercises.- 12. Answers to the Tests.- References.