Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2017, Skopje, Macedonia, September 18–22, 2017, Proceedings, Part I: Lecture Notes in Computer Science, cartea 10534
Editat de Michelangelo Ceci, Jaakko Hollmén, Ljupčo Todorovski, Celine Vens, Sašo Džeroskien Limba Engleză Paperback – 30 dec 2017
The contributions were organized in topical sections named as follows:
Part I: anomaly detection; computer vision; ensembles and meta learning; feature selection and extraction; kernel methods; learning and optimization, matrix and tensor factorization; networks and graphs; neural networks and deep learning.
Part II: pattern and sequence mining; privacy and security; probabilistic models and methods; recommendation; regression; reinforcement learning; subgroup discovery; time series and streams; transfer and multi-task learning; unsupervised and semisupervised learning.
Part III: applied data science track; nectar track; and demo track.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (2) | 362.24 lei 6-8 săpt. | |
Springer International Publishing – 10 ian 2018 | 362.24 lei 6-8 săpt. | |
Springer International Publishing – 30 dec 2017 | 363.08 lei 6-8 săpt. |
Din seria Lecture Notes in Computer Science
- 20% Preț: 1061.55 lei
- 20% Preț: 340.32 lei
- 20% Preț: 341.95 lei
- 20% Preț: 453.32 lei
- 20% Preț: 238.01 lei
- 20% Preț: 340.32 lei
- 20% Preț: 438.69 lei
- Preț: 449.57 lei
- 20% Preț: 343.62 lei
- 20% Preț: 148.66 lei
- 20% Preț: 310.26 lei
- 20% Preț: 256.27 lei
- 20% Preț: 645.28 lei
- 17% Preț: 427.22 lei
- 20% Preț: 655.02 lei
- 20% Preț: 307.71 lei
- 20% Preț: 1075.26 lei
- 20% Preț: 591.51 lei
- Preț: 381.21 lei
- 20% Preț: 337.00 lei
- 15% Preț: 438.59 lei
- 20% Preț: 607.39 lei
- 20% Preț: 538.29 lei
- Preț: 389.48 lei
- 20% Preț: 326.98 lei
- 20% Preț: 1414.79 lei
- 20% Preț: 1024.44 lei
- 20% Preț: 579.30 lei
- 20% Preț: 575.48 lei
- 20% Preț: 583.40 lei
- 20% Preț: 763.23 lei
- 15% Preț: 580.46 lei
- 17% Preț: 360.19 lei
- 20% Preț: 504.57 lei
- 20% Preț: 172.69 lei
- 20% Preț: 369.12 lei
- 20% Preț: 353.50 lei
- 20% Preț: 585.88 lei
- Preț: 410.88 lei
- 20% Preț: 596.46 lei
- 20% Preț: 763.23 lei
- 20% Preț: 825.93 lei
- 20% Preț: 649.49 lei
- 20% Preț: 350.21 lei
- 20% Preț: 309.90 lei
- 20% Preț: 122.89 lei
Preț: 363.08 lei
Preț vechi: 453.85 lei
-20% Nou
Puncte Express: 545
Preț estimativ în valută:
69.49€ • 71.62$ • 58.67£
69.49€ • 71.62$ • 58.67£
Carte tipărită la comandă
Livrare economică 04-18 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783319712482
ISBN-10: 3319712489
Pagini: 814
Ilustrații: LXIII, 852 p. 245 illus.
Dimensiuni: 155 x 235 mm
Greutate: 1.26 kg
Ediția:1st ed. 2017
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Cham, Switzerland
ISBN-10: 3319712489
Pagini: 814
Ilustrații: LXIII, 852 p. 245 illus.
Dimensiuni: 155 x 235 mm
Greutate: 1.26 kg
Ediția:1st ed. 2017
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Cham, Switzerland
Cuprins
Anomaly Detection.- Concentration Free Outlier Detection.- Efficient top rank optimization with gradient boosting for supervised anomaly detection.- Robust, Deep and Inductive Anomaly Detection.- Sentiment Informed Cyberbullying Detection in Social Media.- zooRank: Ranking Suspicious Activities in Time-Evolving Tensors.- Computer Vision.- Alternative Semantic Representations for Zero-Shot Human Action Recognition.- Early Active Learning with Pairwise Constraint for Person Re-identification.- Guiding InfoGAN with Semi-Supervision.- Scatteract: Automated extraction of data from scatter plots.- Unsupervised Diverse Colorization via Generative Adversarial Networks.- Ensembles and Meta Learning.- Dynamic Ensemble Selection with Probabilistic Classifier Chains.- Ensemble-Compression: A New Method for Parallel Training of Deep Neural Networks.- Fast and Accurate Density Estimation with Extremely Randomized Cutset Networks.- Feature Selection and Extraction.- Deep Discrete Hashing with Self-supervised Labels.- Including multi-feature interactions and redundancy for feature ranking in mixed datasets.- Non-redundant Spectral Dimensionality Reduction.- Rethinking Unsupervised Feature Selection: From Pseudo Labels to Pseudo Must-links.- SetExpan: Corpus-based Set Expansion via Context Feature Selection and Rank Ensemble.- Kernel Methods.- Bayesian Nonlinear Support Vector Machines for Big Data.- Entropic Trace Estimation for Log Determinants.- Fair Kernel Learning.- GaKCo: a Fast Gapped k-mer string Kernel using Counting.- Graph Enhanced Memory Networks for Sentiment Analysis.- Kernel Sequential Monte Carlo.- Learning Lukasiewicz Logic Fragments by Quadratic Programming.- Nystrom sketching.- Learning and Optimization.- Crossprop: learning representations by stochastic meta-gradient descent in neural networks.- Distributed Stochastic Optimization of the Regularized Risk via Saddle-point Problem.- Speeding up Hyper-parameter Optimization by Extrapolation of Learning Curves using Previous Builds.- Matrix and Tensor Factorization.- Comparative Study of Inference Methods for Bayesian Nonnegative Matrix Factorisation.- Content-Based Social Recommendation with Poisson Matrix Factorization.- C-SALT: Mining Class-Speci_c ALTerations in Boolean Matrix Factorization.- Feature Extraction for Incomplete Data via Low-rank Tucker Decomposition.- Structurally Regularized Non-negative Tensor Factorization for Spatio-temporal Pattern Discoveries.- Networks and Graphs.- Attributed Graph Clustering with Unimodal Normalized Cut.- K-clique-graphs for Dense Subgraph Discovery.- Learning and Scaling Directed Networks via Graph Embedding.- Local Lanczos Spectral Approximation for Membership Identification.- Regularizing Knowledge Graph Embeddings via Equivalence and Inversion Axioms.- Survival Factorization for Topical Cascades on Diffusion Networks.- The network-untangling problem: From interactions to activity timelines.-TransT: Type-based Multiple Embedding Representations forKnowledge Graph Completion.- Neural Networks and Deep Learning.- A network Architecture for Multi-multi Instance Learning.- CON-S2V: A Generic Framework for Incorporating Extra-Sentential Context into Sen2Vec.- Deep Over-sampling Framework for Classifying Imbalanced Data.- FCNNs: Fourier Convolutional Neural Networks.- Joint User Modeling across Aligned Heterogeneous Sites using Neural Networks.- Sequence Generation with Target Attention.- Wikipedia Vandal Early Detection: from User Behavior to User Embedding.
Caracteristici
Includes supplementary material: sn.pub/extras