Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2018, Dublin, Ireland, September 10–14, 2018, Proceedings, Part I: Lecture Notes in Computer Science, cartea 11051
Editat de Michele Berlingerio, Francesco Bonchi, Thomas Gärtner, Neil Hurley, Georgiana Ifrimen Limba Engleză Paperback – 18 ian 2019
The contributions were organized in topical sections named as follows:
Part I: adversarial learning; anomaly and outlier detection; applications; classification; clustering and unsupervised learning; deep learningensemble methods; and evaluation.
Part II: graphs; kernel methods; learning paradigms; matrix and tensor analysis; online and active learning; pattern and sequence mining; probabilistic models and statistical methods; recommender systems; and transfer learning.
Part III: ADS data science applications; ADS e-commerce; ADS engineering and design; ADS financial and security; ADS health; ADS sensing and positioning; nectar track; and demo track.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (2) | 348.96 lei 6-8 săpt. | |
Springer International Publishing – 18 ian 2019 | 348.96 lei 6-8 săpt. | |
Springer International Publishing – 23 ian 2019 | 661.51 lei 6-8 săpt. |
Din seria Lecture Notes in Computer Science
- 20% Preț: 1040.03 lei
- 20% Preț: 333.46 lei
- 20% Preț: 335.08 lei
- 20% Preț: 567.60 lei
- 20% Preț: 238.01 lei
- 15% Preț: 568.74 lei
- 20% Preț: 333.46 lei
- 20% Preț: 438.69 lei
- Preț: 373.56 lei
- 20% Preț: 336.71 lei
- 20% Preț: 148.66 lei
- 20% Preț: 310.26 lei
- 20% Preț: 632.22 lei
- 20% Preț: 747.79 lei
- 20% Preț: 1053.45 lei
- 17% Preț: 427.22 lei
- 20% Preț: 641.78 lei
- 20% Preț: 307.71 lei
- 20% Preț: 809.19 lei
- 20% Preț: 579.56 lei
- 20% Preț: 649.49 lei
- 20% Preț: 330.23 lei
- Preț: 389.48 lei
- 20% Preț: 607.39 lei
- 20% Preț: 538.29 lei
- 20% Preț: 1003.66 lei
- 20% Preț: 326.98 lei
- 20% Preț: 256.27 lei
- 20% Preț: 444.17 lei
- 20% Preț: 571.63 lei
- 20% Preț: 575.48 lei
- 20% Preț: 574.05 lei
- 17% Preț: 360.19 lei
- 20% Preț: 504.57 lei
- 20% Preț: 172.69 lei
- 20% Preț: 369.12 lei
- 20% Preț: 346.40 lei
- 20% Preț: 747.79 lei
- Preț: 402.62 lei
- 20% Preț: 584.40 lei
- 20% Preț: 569.19 lei
- 20% Preț: 1159.14 lei
- 20% Preț: 1386.07 lei
- 20% Preț: 343.16 lei
- 20% Preț: 309.90 lei
- 20% Preț: 122.89 lei
Preț: 348.96 lei
Preț vechi: 436.20 lei
-20% Nou
Puncte Express: 523
Preț estimativ în valută:
66.79€ • 70.07$ • 55.41£
66.79€ • 70.07$ • 55.41£
Carte tipărită la comandă
Livrare economică 29 ianuarie-12 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030109240
ISBN-10: 3030109240
Pagini: 710
Ilustrații: XXXVIII, 740 p. 451 illus., 159 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 1.07 kg
Ediția:1st ed. 2019
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Cham, Switzerland
ISBN-10: 3030109240
Pagini: 710
Ilustrații: XXXVIII, 740 p. 451 illus., 159 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 1.07 kg
Ediția:1st ed. 2019
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Cham, Switzerland
Cuprins
Adversarial Learning.- Image Anomaly Detection with Generative Adversarial Networks.- Image-to-Markup Generation via Paired Adversarial Learning.- Toward an Understanding of Adversarial Examples in Clinical Trials.- ShapeShifter: Robust Physical Adversarial Attack on Faster R-CNN Object Detector.- Anomaly and Outlier Detection.- GridWatch: Sensor Placement and Anomaly Detection in the Electrical Grid.- Incorporating Privileged Information to Unsupervised Anomaly Detection.- L1-Depth Revisited: A Robust Angle-based Outlier Factor in High-dimensional Space.- Beyond Outlier Detection: LookOut for Pictorial Explanation.- Scalable and Interpretable One-class SVMs with Deep Learning and Random Fourier Features.- Group Anomaly Detection using Deep Generative Models.- Applications.- A Discriminative Model for Identifying Readers and Assessing Text Comprehension from Eye Movements.- Face-Cap: Image Captioning using Facial Expression Analysis.- Pedestrian Trajectory Prediction with Structured Memory Hierarchies.- Classification.- Multiple Instance Learning with Bag-level Randomized Trees.- One-class Quantification.- Deep F-Measure Maximization in Multi-Label Classification: A Comparative Study.- Ordinal Label Proportions.- AWX: An Integrated Approach to Hierarchical-Multilabel Classification.- Clustering and Unsupervised Learning.- Clustering in the Presence of Concept Drift.- Time Warp Invariant Dictionary Learning for Time Series Clustering.- How Your Supporters and Opponents Define Your Interestingness.- Deep Learning.- Efficient Decentralized Deep Learning by Dynamic Model Averaging.- Using Supervised Pretraining to Improve Generalization of Neural Networks on Binary Classification Problems.- Towards Efficient Forward Propagation on Resource-Constrained Systems.- Auxiliary Guided Autoregressive Variational Autoencoders.- Cooperative Multi-Agent Policy Gradient.- Parametric t-Distributed Stochastic Exemplar-centered Embedding.- Joint autoencoders: a flexible meta-learning framework.- Privacy Preserving Synthetic Data Release Using Deep Learning.- On Finer Control of Information Flow in LSTMs.- MaxGain: Regularisation of Neural Networks by Constraining Activation Magnitudes.- Ontology alignment based on word embedding and random forest classification.- Domain Adaption in One-Shot Learning.- Ensemble Methods.- Axiomatic Characterization of AdaBoost and the Multiplicative Weight Update Procedure.- Modular Dimensionality Reduction.- Constructive Aggregation and its Application to Forecasting with Dynamic Ensembles.- MetaBags: Bagged Meta-Decision Trees for Regression.- Evaluation.- Visualizing the Feature Importance for Black Box Models.- Efficient estimation of AUC in a sliding window.- Controlling and visualizing the precision-recall tradeoff for external performance indices.- Evaluation Procedures for Forecasting with Spatio-Temporal Data.- A Blended Metric for Multi-label Optimisation and Evaluation.