Machine Learning and Knowledge Extraction: First IFIP TC 5, WG 8.4, 8.9, 12.9 International Cross-Domain Conference, CD-MAKE 2017, Reggio, Italy, August 29 – September 1, 2017, Proceedings: Lecture Notes in Computer Science, cartea 10410
Editat de Andreas Holzinger, Peter Kieseberg, A Min Tjoa, Edgar Weipplen Limba Engleză Paperback – 24 aug 2017
The 24 revised full papers presented were carefully reviewed and selected for inclusion in this volume. The papers deal with fundamental questions and theoretical aspects and cover a wide range of topics in the field of machine learning and knowledge extraction. They are organized in the following topical sections: MAKE topology; MAKE smart factory; MAKE privacy; MAKE VIS; MAKE AAL; and MAKE semantics.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (6) | 337.00 lei 6-8 săpt. | |
Springer International Publishing – 24 aug 2018 | 337.00 lei 6-8 săpt. | |
Springer International Publishing – 24 aug 2017 | 337.20 lei 6-8 săpt. | |
Springer International Publishing – 23 aug 2019 | 339.14 lei 6-8 săpt. | |
Springer International Publishing – 12 aug 2022 | 593.33 lei 6-8 săpt. | |
Springer International Publishing – 12 aug 2021 | 649.43 lei 6-8 săpt. | |
Springer International Publishing – 21 aug 2020 | 658.65 lei 6-8 săpt. |
Din seria Lecture Notes in Computer Science
- 20% Preț: 1061.55 lei
- 20% Preț: 307.71 lei
- 20% Preț: 438.69 lei
- 20% Preț: 645.28 lei
- Preț: 410.88 lei
- 15% Preț: 580.46 lei
- 17% Preț: 427.22 lei
- 20% Preț: 596.46 lei
- Preț: 381.21 lei
- 20% Preț: 353.50 lei
- 20% Preț: 1414.79 lei
- 20% Preț: 309.90 lei
- 20% Preț: 583.40 lei
- 20% Preț: 1075.26 lei
- 20% Preț: 310.26 lei
- 20% Preț: 655.02 lei
- 20% Preț: 580.93 lei
- 20% Preț: 340.32 lei
- 15% Preț: 438.59 lei
- 20% Preț: 591.51 lei
- 20% Preț: 649.49 lei
- 20% Preț: 337.00 lei
- Preț: 449.57 lei
- 20% Preț: 607.39 lei
- 20% Preț: 1024.44 lei
- 20% Preț: 579.30 lei
- 20% Preț: 763.23 lei
- 20% Preț: 453.32 lei
- 20% Preț: 575.48 lei
- 20% Preț: 585.88 lei
- 20% Preț: 825.93 lei
- 20% Preț: 763.23 lei
- 17% Preț: 360.19 lei
- 20% Preț: 1183.14 lei
- 20% Preț: 340.32 lei
- 20% Preț: 504.57 lei
- 20% Preț: 369.12 lei
- 20% Preț: 583.40 lei
- 20% Preț: 343.62 lei
- 20% Preț: 350.21 lei
- 20% Preț: 764.89 lei
- 20% Preț: 583.40 lei
- Preț: 389.48 lei
- 20% Preț: 341.95 lei
- 20% Preț: 238.01 lei
- 20% Preț: 538.29 lei
Preț: 337.20 lei
Preț vechi: 421.49 lei
-20% Nou
Puncte Express: 506
Preț estimativ în valută:
64.52€ • 67.54$ • 53.70£
64.52€ • 67.54$ • 53.70£
Carte tipărită la comandă
Livrare economică 31 martie-14 aprilie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783319668079
ISBN-10: 3319668072
Pagini: 376
Ilustrații: XV, 376 p. 129 illus.
Dimensiuni: 155 x 235 mm
Greutate: 0.55 kg
Ediția:1st ed. 2017
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Information Systems and Applications, incl. Internet/Web, and HCI
Locul publicării:Cham, Switzerland
ISBN-10: 3319668072
Pagini: 376
Ilustrații: XV, 376 p. 129 illus.
Dimensiuni: 155 x 235 mm
Greutate: 0.55 kg
Ediția:1st ed. 2017
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Information Systems and Applications, incl. Internet/Web, and HCI
Locul publicării:Cham, Switzerland
Caracteristici
Includes supplementary material: sn.pub/extras
Cuprins
Explainable Artificial Intelligence: concepts, applications, research challenges and visions.- The Explanation Game: Explaining Machine Learning Models Using Shapley Values.- Back to the Feature: a Neural-Symbolic Perspective on Explainable AI.- Explain Graph Neural Networks to Understand Weighted Graph Features in Node Classification.- Explainable Reinforcement Learning: A Survey.- A Projected Stochastic Gradient algorithm for estimating Shapley Value applied in attribute importance.- Explaining predictive models with mixed features using Shapley values and conditional inference trees.- Explainable Deep Learning for Fault Prognostics in Complex Systems: A Particle Accelerator Use-Case.- eXDiL: A Tool for Classifying and eXplaining Hospital Discharge Letters.- Data Understanding and Interpretation by the Cooperation of Data Analyst and Medical Expert.- A study on the fusion of pixels and patient metadata in CNN-based classification of skin lesion images.- The European legal framework for medical AI.- An Efficient Method for Mining Informative Association Rules in Knowledge Extraction.- Interpretation of SVM using Data Mining Technique to Extract Syllogistic Rules.- Non-Local Second-Order Attention Network For Single Image Super Resolution.- ML-ModelExplorer: An explorative model-agnostic approach to evaluate and compare multi-class classifiers.- Subverting Network Intrusion Detection: Crafting Adversarial Examples Accounting for Domain-Specific Constraints.- Scenario-based Requirements Elicitation for User-Centric Explainable AI A Case in Fraud Detection.- On-the-fly Black-Box Probably Approximately Correct Checking of Recurrent Neural Networks.- Active Learning for Auditory Hierarchy.- Improving short text classification through global augmentation methods.- Interpretable Topic Extraction and Word Embedding Learning using row-stochastic DEDICOM.- A Clustering Backed Deep Learning Approach for Document Layout Analysis.- Calibrating Human-AI Collaboration: Impactof Risk, Ambiguity and Transparency on Algorithmic Bias.- Applying AI in Practice: Key Challenges and Lessons Learned.- Function Space Pooling For Graph Convolutional Networks.- Analysis of optical brain signals using connectivity graph networks.- Property-Based Testing for Parameter Learning of Probabilistic Graphical Models.- An Ensemble Interpretable Machine Learning Scheme for Securing Data Quality at the Edge.- Inter-Space Machine Learning in Smart Environments.