Cantitate/Preț
Produs

Machine Learning Challenges: Evaluating Predictive Uncertainty, Visual Object Classification, and Recognizing Textual Entailment, First Pascal Machine Learning Challenges Workshop, MLCW 2005, Southampton, UK, April 11-13, 2005, Revised Selected Papers: Lecture Notes in Computer Science, cartea 3944

Editat de Joaquin Quinonero-Candela, Ido Dagan, Bernardo Magnini, Florence d'Alché-Buc
en Limba Engleză Paperback – 11 mai 2006

Din seria Lecture Notes in Computer Science

Preț: 34163 lei

Preț vechi: 42704 lei
-20% Nou

Puncte Express: 512

Preț estimativ în valută:
6538 6745$ 5533£

Carte tipărită la comandă

Livrare economică 05-19 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540334279
ISBN-10: 3540334270
Pagini: 484
Ilustrații: XIII, 462 p.
Dimensiuni: 155 x 235 x 29 mm
Greutate: 0.67 kg
Ediția:2006
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Evaluating Predictive Uncertainty Challenge.- Classification with Bayesian Neural Networks.- A Pragmatic Bayesian Approach to Predictive Uncertainty.- Many Are Better Than One: Improving Probabilistic Estimates from Decision Trees.- Estimating Predictive Variances with Kernel Ridge Regression.- Competitive Associative Nets and Cross-Validation for Estimating Predictive Uncertainty on Regression Problems.- Lessons Learned in the Challenge: Making Predictions and Scoring Them.- The 2005 PASCAL Visual Object Classes Challenge.- The PASCAL Recognising Textual Entailment Challenge.- Using Bleu-like Algorithms for the Automatic Recognition of Entailment.- What Syntax Can Contribute in the Entailment Task.- Combining Lexical Resources with Tree Edit Distance for Recognizing Textual Entailment.- Textual Entailment Recognition Based on Dependency Analysis and WordNet.- Learning Textual Entailment on a Distance Feature Space.- An Inference Model for Semantic Entailment in Natural Language.- A Lexical Alignment Model for Probabilistic Textual Entailment.- Textual Entailment Recognition Using Inversion Transduction Grammars.- Evaluating Semantic Evaluations: How RTE Measures Up.- Partial Predicate Argument Structure Matching for Entailment Determination.- VENSES – A Linguistically-Based System for Semantic Evaluation.- Textual Entailment Recognition Using a Linguistically–Motivated Decision Tree Classifier.- Recognizing Textual Entailment Via Atomic Propositions.- Recognising Textual Entailment with Robust Logical Inference.- Applying COGEX to Recognize Textual Entailment.- Recognizing Textual Entailment: Is Word Similarity Enough?.