Machine Learning: ECML 2005: 16th European Conference on Machine Learning, Porto, Portugal, October 3-7, 2005, Proceedings: Lecture Notes in Computer Science, cartea 3720
Editat de João Gama, Rui Camacho, Pavel Brazdil, Alípio Jorge, Luís Torgoen Limba Engleză Paperback – 22 sep 2005
Din seria Lecture Notes in Computer Science
- 20% Preț: 741.34 lei
- 20% Preț: 340.22 lei
- 20% Preț: 343.43 lei
- 20% Preț: 315.18 lei
- 20% Preț: 327.41 lei
- 20% Preț: 1031.06 lei
- 20% Preț: 438.67 lei
- 20% Preț: 315.76 lei
- 20% Preț: 330.61 lei
- 20% Preț: 148.66 lei
- 20% Preț: 122.89 lei
- 20% Preț: 995.03 lei
- 20% Preț: 562.71 lei
- 20% Preț: 237.99 lei
- 20% Preț: 504.57 lei
- 20% Preț: 332.20 lei
- 15% Preț: 563.85 lei
- 20% Preț: 636.26 lei
- 5% Preț: 365.59 lei
- 20% Preț: 321.95 lei
- 20% Preț: 310.26 lei
- 20% Preț: 607.38 lei
- Preț: 370.38 lei
- 20% Preț: 172.68 lei
- 20% Preț: 315.76 lei
- 20% Preț: 662.78 lei
- 20% Preț: 256.26 lei
- 20% Preț: 440.36 lei
- 20% Preț: 626.79 lei
- 20% Preț: 566.70 lei
- 17% Preț: 360.19 lei
- 20% Preț: 309.90 lei
- 20% Preț: 579.38 lei
- 20% Preț: 301.94 lei
- 20% Preț: 307.71 lei
- 20% Preț: 369.12 lei
- 20% Preț: 330.61 lei
- 20% Preț: 1044.38 lei
- 20% Preț: 574.58 lei
- Preț: 399.17 lei
- 20% Preț: 802.24 lei
- 20% Preț: 569.11 lei
- 20% Preț: 1374.12 lei
- 20% Preț: 333.84 lei
- 20% Preț: 538.29 lei
- 20% Preț: 326.97 lei
Preț: 651.02 lei
Preț vechi: 813.78 lei
-20% Nou
Puncte Express: 977
Preț estimativ în valută:
124.60€ • 129.87$ • 103.73£
124.60€ • 129.87$ • 103.73£
Carte tipărită la comandă
Livrare economică 04-18 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540292432
ISBN-10: 3540292438
Pagini: 800
Ilustrații: XXIII, 769 p.
Dimensiuni: 155 x 235 x 32 mm
Greutate: 1.1 kg
Ediția:2005
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540292438
Pagini: 800
Ilustrații: XXIII, 769 p.
Dimensiuni: 155 x 235 x 32 mm
Greutate: 1.1 kg
Ediția:2005
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Invited Talks.- Data Analysis in the Life Sciences — Sparking Ideas —.- Machine Learning for Natural Language Processing (and Vice Versa?).- Statistical Relational Learning: An Inductive Logic Programming Perspective.- Recent Advances in Mining Time Series Data.- Focus the Mining Beacon: Lessons and Challenges from the World of E-Commerce.- Data Streams and Data Synopses for Massive Data Sets (Invited Talk).- Long Papers.- Clustering and Metaclustering with Nonnegative Matrix Decompositions.- A SAT-Based Version Space Algorithm for Acquiring Constraint Satisfaction Problems.- Estimation of Mixture Models Using Co-EM.- Nonrigid Embeddings for Dimensionality Reduction.- Multi-view Discriminative Sequential Learning.- Robust Bayesian Linear Classifier Ensembles.- An Integrated Approach to Learning Bayesian Networks of Rules.- Thwarting the Nigritude Ultramarine: Learning to Identify Link Spam.- Rotational Prior Knowledge for SVMs.- On the LearnAbility of Abstraction Theories from Observations for Relational Learning.- Beware the Null Hypothesis: Critical Value Tables for Evaluating Classifiers.- Kernel Basis Pursuit.- Hybrid Algorithms with Instance-Based Classification.- Learning and Classifying Under Hard Budgets.- Training Support Vector Machines with Multiple Equality Constraints.- A Model Based Method for Automatic Facial Expression Recognition.- Margin-Sparsity Trade-Off for the Set Covering Machine.- Learning from Positive and Unlabeled Examples with Different Data Distributions.- Towards Finite-Sample Convergence of Direct Reinforcement Learning.- Infinite Ensemble Learning with Support Vector Machines.- A Kernel Between Unordered Sets of Data: The Gaussian Mixture Approach.- Active Learning for Probability Estimation Using Jensen-Shannon Divergence.- Natural Actor-Critic.- Inducing Head-Driven PCFGs with Latent Heads: Refining a Tree-Bank Grammar for Parsing.- Learning (k,l)-Contextual Tree Languages for Information Extraction.- Neural Fitted Q Iteration – First Experiences with a Data Efficient Neural Reinforcement Learning Method.- MCMC Learning of Bayesian Network Models by Markov Blanket Decomposition.- On Discriminative Joint Density Modeling.- Model-Based Online Learning of POMDPs.- Simple Test Strategies for Cost-Sensitive Decision Trees.- -Likelihood and -Updating Algorithms: Statistical Inference in Latent Variable Models.- An Optimal Best-First Search Algorithm for Solving Infinite Horizon DEC-POMDPs.- Ensemble Learning with Supervised Kernels.- Using Advice to Transfer Knowledge Acquired in One Reinforcement Learning Task to Another.- A Distance-Based Approach for Action Recommendation.- Multi-armed Bandit Algorithms and Empirical Evaluation.- Annealed Discriminant Analysis.- Network Game and Boosting.- Model Selection in Omnivariate Decision Trees.- Bayesian Network Learning with Abstraction Hierarchies and Context-Specific Independence.- Short Papers.- Learning to Complete Sentences.- The Huller: A Simple and EfficientOnline SVM.- Inducing Hidden Markov Models to Model Long-Term Dependencies.- A Similar Fragments Merging Approach to Learn Automata on Proteins.- Nonnegative Lagrangian Relaxation of K-Means and Spectral Clustering.- Severe Class Imbalance: Why Better Algorithms Aren’t the Answer.- Approximation Algorithms for Minimizing Empirical Error by Axis-Parallel Hyperplanes.- A Comparison of Approaches for Learning Probability Trees.- Counting Positives Accurately Despite Inaccurate Classification.- Optimal Stopping and Constraints for Diffusion Models of Signals with Discontinuities.- An Evolutionary Function Approximation Approach to Compute Prediction in XCSF.- Using Rewards for Belief State Updates in Partially Observable Markov Decision Processes.- Active Learning in Partially Observable Markov Decision Processes.- Machine Learning of Plan Robustness Knowledge About Instances.- Two Contributions of Constraint Programming to Machine Learning.- A Clustering Model Based on Matrix Approximation with Applications to Cluster System Log Files.- Detecting Fraud in Health Insurance Data: Learning to Model Incomplete Benford’s Law Distributions.- Efficient Case Based Feature Construction.- Fitting the Smallest Enclosing Bregman Ball.- Similarity-Based Alignment and Generalization.- Fast Non-negative Dimensionality Reduction for Protein Fold Recognition.- Mode Directed Path Finding.- Classification with Maximum Entropy Modeling of Predictive Association Rules.- Classification of Ordinal Data Using Neural Networks.- Independent Subspace Analysis on Innovations.- On Applying Tabling to Inductive Logic Programming.- Learning Models of Relational Stochastic Processes.- Error-Sensitive Grading for Model Combination.- Strategy Learning for Reasoning Agents.- Combining Bias and Variance Reduction Techniques for Regression Trees.- Analysis of Generic Perceptron-Like Large Margin Classifiers.- Multimodal Function Optimizing by a New Hybrid Nonlinear Simplex Search and Particle Swarm Algorithm.