Machine Learning for Factor Investing: Python Version: Chapman and Hall/CRC Financial Mathematics Series
Autor Guillaume Coqueret, Tony Guidaen Limba Engleză Paperback – 8 aug 2023
The book covers a wide array of subjects which range from economic rationales to rigorous portfolio back-testing and encompass both data processing and model interpretability. Common supervised learning algorithms such as tree models and neural networks are explained in the context of style investing and the reader can also dig into more complex techniques like autoencoder asset returns, Bayesian additive trees and causal models.
All topics are illustrated with self-contained Python code samples and snippets that are applied to a large public dataset that contains over 90 predictors. The material is available online so that readers can reproduce and enhance the examples at their convenience. If you have even a basic knowledge of quantitative finance, this combination of theoretical concepts and practical illustrations will help you learn quickly and deepen your financial and technical expertise.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (2) | 489.58 lei 3-5 săpt. | +28.26 lei 7-11 zile |
CRC Press – 8 aug 2023 | 489.58 lei 3-5 săpt. | +28.26 lei 7-11 zile |
CRC Press – sep 2020 | 491.31 lei 3-5 săpt. | +34.50 lei 7-11 zile |
Hardback (2) | 996.62 lei 6-8 săpt. | |
CRC Press – sep 2020 | 996.62 lei 6-8 săpt. | |
CRC Press – 8 aug 2023 | 1301.32 lei 6-8 săpt. |
Din seria Chapman and Hall/CRC Financial Mathematics Series
- 9% Preț: 833.51 lei
- 9% Preț: 641.09 lei
- 9% Preț: 766.41 lei
- 8% Preț: 376.64 lei
- Preț: 341.73 lei
- 9% Preț: 606.38 lei
- 9% Preț: 704.11 lei
- 8% Preț: 532.05 lei
- 8% Preț: 410.54 lei
- 9% Preț: 1212.09 lei
- 9% Preț: 716.11 lei
- 8% Preț: 459.75 lei
- 9% Preț: 1213.55 lei
- Preț: 364.17 lei
- 9% Preț: 731.00 lei
- 8% Preț: 548.53 lei
- 8% Preț: 547.38 lei
- 8% Preț: 497.25 lei
- 9% Preț: 595.34 lei
- Preț: 342.36 lei
- 9% Preț: 734.64 lei
- 9% Preț: 575.14 lei
- Preț: 405.39 lei
- 26% Preț: 1014.74 lei
- Preț: 436.14 lei
- 12% Preț: 313.19 lei
- 26% Preț: 1014.74 lei
- 12% Preț: 312.43 lei
- Preț: 436.14 lei
- Preț: 356.63 lei
- 15% Preț: 599.94 lei
- 18% Preț: 783.69 lei
- 15% Preț: 570.70 lei
- 24% Preț: 900.85 lei
- 18% Preț: 1280.44 lei
- 9% Preț: 594.56 lei
- 21% Preț: 382.28 lei
- 20% Preț: 508.40 lei
- 26% Preț: 763.78 lei
- 20% Preț: 1288.30 lei
- 25% Preț: 1438.38 lei
Preț: 489.58 lei
Preț vechi: 532.16 lei
-8% Nou
Puncte Express: 734
Preț estimativ în valută:
93.69€ • 96.66$ • 79.30£
93.69€ • 96.66$ • 79.30£
Carte disponibilă
Livrare economică 11-25 februarie
Livrare express 28 ianuarie-01 februarie pentru 38.25 lei
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780367639723
ISBN-10: 0367639726
Pagini: 358
Ilustrații: 15 Tables, black and white; 80 Line drawings, color; 7 Line drawings, black and white; 1 Halftones, color; 81 Illustrations, color; 7 Illustrations, black and white
Dimensiuni: 178 x 254 x 20 mm
Greutate: 0.66 kg
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC
Seria Chapman and Hall/CRC Financial Mathematics Series
ISBN-10: 0367639726
Pagini: 358
Ilustrații: 15 Tables, black and white; 80 Line drawings, color; 7 Line drawings, black and white; 1 Halftones, color; 81 Illustrations, color; 7 Illustrations, black and white
Dimensiuni: 178 x 254 x 20 mm
Greutate: 0.66 kg
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC
Seria Chapman and Hall/CRC Financial Mathematics Series
Public țintă
Professional Practice & DevelopmentCuprins
Part 1. Introduction 1. Notations and data 2. Introduction 3. Factor investing and asset pricing anomalies 4. Data preprocessing Part 2. Common supervised algorithms 5. Penalized regressions and sparse hedging for minimum variance portfolios 6. Tree-based methods 7. Neural networks 8. Support vector machines 9. Bayesian methods Part 3. From predictions to portfolios 10. Validating and tuning 11. Ensemble models 12. Portfolio backtesting Part 4. Further important topics 13. Interpretability 14. Two key concepts: causality and non-stationarity 15. Unsupervised learning 16. Reinforcement learning Part 5. Appendix 17. Data description 18. Solutions to exercises
Recenzii
"Machine learning is considered promising for investment management applications, yet the associated low signal to noise ratio presents a high bar for improving on the incumbent quant asset management tooling. The book of Coqueret and Guida is a treat for those who do not want to lose sight of the machine learning forest for the trees. Whether you are an academic scholar or a finance practitioner, you will learn just what you need to rigorously investigate machine learning techniques for factor investing applications, along with plenty of useful code snippets."
-Harald Lohre, Executive Director of Research at Robeco and Honorary Researcher at Lancaster University Management School
"Written by two experts on quantitative finance, this book covers everything from basic materials to advanced techniques in the field of quantitative investment strategies: data processing, alpha signal generation, portfolio optimization, backtesting and performance evaluation. Concrete examples related to asset management problems illustrate each machine learning technique, such as neural network, lasso regression, autoencoder or reinforcement learning. With more than 20 coding exercises and solutions provided in Python, this publication is a must for both students, academics and professionals who are looking for an up-to-date technical exposition on quantitative asset management from basic smart beta portfolios to enhanced alpha strategies including factor investing."
-Thierry Roncalli, Head of Quantitative Portfolio Strategy at Amundi Institute, Amundi Asset Management
-Harald Lohre, Executive Director of Research at Robeco and Honorary Researcher at Lancaster University Management School
"Written by two experts on quantitative finance, this book covers everything from basic materials to advanced techniques in the field of quantitative investment strategies: data processing, alpha signal generation, portfolio optimization, backtesting and performance evaluation. Concrete examples related to asset management problems illustrate each machine learning technique, such as neural network, lasso regression, autoencoder or reinforcement learning. With more than 20 coding exercises and solutions provided in Python, this publication is a must for both students, academics and professionals who are looking for an up-to-date technical exposition on quantitative asset management from basic smart beta portfolios to enhanced alpha strategies including factor investing."
-Thierry Roncalli, Head of Quantitative Portfolio Strategy at Amundi Institute, Amundi Asset Management
Notă biografică
Guillaume Coqueret is associate professor of finance and data science at EMLYON Business School. His recent research revolves around applications of machine learning tools in financial economics.
Tony Guida is co-head of Systematic Macro at RAM Active Investments. He is the editor and co-author of Big Data and Machine Learning in Quantitative Investment.
Tony Guida is co-head of Systematic Macro at RAM Active Investments. He is the editor and co-author of Big Data and Machine Learning in Quantitative Investment.
Descriere
Machine learning (ML) is progressively reshaping the fields of quantitative finance and algorithmic trading. ML tools are increasingly adopted by hedge funds and asset managers, notably for alpha signal generation and stocks selection.