Cantitate/Preț
Produs

Machine Learning of Robot Assembly Plans: The Springer International Series in Engineering and Computer Science, cartea 51

Autor Alberto Maria Segre
en Limba Engleză Hardback – 30 apr 1988
The study of artificial intelligence (AI) is indeed a strange pursuit. Unlike most other disciplines, few AI researchers even agree on a mutually acceptable definition of their chosen field of study. Some see AI as a sub field of computer science, others see AI as a computationally oriented branch of psychology or linguistics, while still others see it as a bag of tricks to be applied to an entire spectrum of diverse domains. This lack of unified purpose among the AI community makes this a very exciting time for AI research: new and diverse projects are springing up literally every day. As one might imagine, however, this diversity also leads to genuine difficulties in assessing the significance and validity of AI research. These difficulties are an indication that AI has not yet matured as a science: it is still at the point where people are attempting to lay down (hopefully sound) foundations. Ritchie and Hanna [1] posit the following categorization as an aid in assessing the validity of an AI research endeavor: (1) The project could introduce, in outline, a novel (or partly novel) idea or set of ideas. (2) The project could elaborate the details of some approach. Starting with the kind of idea in (1), the research could criticize it or fill in further details (3) The project could be an AI experiment, where a theory as in (1) and (2) is applied to some domain. Such experiments are usually computer programs that implement a particular theory.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 61915 lei  6-8 săpt.
  Springer Us – 5 oct 2011 61915 lei  6-8 săpt.
Hardback (1) 62391 lei  6-8 săpt.
  Springer Us – 30 apr 1988 62391 lei  6-8 săpt.

Din seria The Springer International Series in Engineering and Computer Science

Preț: 62391 lei

Preț vechi: 77989 lei
-20% Nou

Puncte Express: 936

Preț estimativ în valută:
11941 12597$ 9951£

Carte tipărită la comandă

Livrare economică 02-16 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780898382693
ISBN-10: 0898382696
Pagini: 234
Ilustrații: XVIII, 234 p.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.5 kg
Ediția:1988
Editura: Springer Us
Colecția Springer
Seria The Springer International Series in Engineering and Computer Science

Locul publicării:New York, NY, United States

Public țintă

Research

Cuprins

1 Introduction.- 1.1. Machine Learning.- 1.2. Robotics.- 1.3. About the Book.- 2 Scenario.- 2.1. Preliminaries.- 2.2. Specifying the Problem.- 2.3. Attempting to Solve the Problem.- 2.4. Observing the Expert’s Plan.- 2.5. Generalizing the Solution.- 2.6. Solving the Same Problem After Learning.- 2.7. Solving Similar Problems After Learning.- 3 Explanation-Based Learning.- 3.1. Similarity-Based Learning.- 3.2. Learning-Apprentice Systems.- 3.3. Explanation-Based Learning.- 3.4. A Prototypical EBL System.- 3.5. Issues for EBL Systems.- 4 The Arms World.- 4.1. Characterizing the Robot World.- 4.2. Simulating the Robot World.- 5 Learning And Problem Solving.- 5.1. Knowledge Representation.- 5.2. The Performance Element.- 5.3. The Learning Element.- 6 The Arms Implementation.- 6.1. A Note About the Implementation Language.- 6.2. Optimization Tools.- 6.3. Implementing the Solid Modeler.- 6.4. Implementing the Graphics Subsystem.- 6.5. Implementing the Schema System.- 6.6. Implementing the Top Level.- 7 Scenario Revisited.- 7.1. Attempting to Solve the Problem.- 7.2. Observing the Expert’s Plan.- 7.3. Verifying the Solution.- 7.4. Generalizing the Solution.- 7.5. Solving the Same Problem After Learning.- 7.6. Solving Similar Problems After Learning.- 7.7. Observing Similar Problems After Learning.- 8 Summary And Future Work.- 8.1. Relation to Other Work.- 8.2. Extensibility of ARMS.- 8.3. Future Research Directions.- 8.4. Conclusions.- Appendix A Solid Modeling Systems.- Appendix B Schema Semantics.- Appendix C A Simpler Example.- C.1. Describing the Initial State.- C.2. Attempting to Solve the Problem.- C.3. Observing the Expert’s Plan.- C.4. Verifying the Solution.- C.5. Generalizing the Solution.- C.6. Solving the Same Problem After Learning.- C.7. Solving SimilarProblems After Learning.- C.8. Observing Similar Problems After Learning.- Appendix D A More Complex Example.- D.1. Describing the Initial State.- D.2. Attempting to Solve the Problem.- D.3. Observing the Expert’s Plan.- D.4. Verifying the Solution.- D.5. Generalizing the Solution.- D.5.1. A More General New Schema.- D.5.2. A More Operational New Schema.- D.6. Solving the Same Problem After Learning.- D.7. Solving Similar Problems After Learning.- Appendix E Performance Considerations.- E.1. Learning Episode 1.- E.2. Problem-Solving Episode 1.- E.3. Problem-Solving Episode 2.- E.4. Problem-Solving Episode 3.- E.5. Problem-Solving Episode 4.- E.6. Learning Episode 2.- E.7. Learning Episode 3.- E.8. Problem-Solving Episode 5.- E.9. Problem-Solving Episode 6.- Appendix F Built-in Schemata.- F.1. State Schemata.- F.1.1. Joint Schemata.- F.1.2. Degree of Freedom Schemata.- F.1.3. Constraint Schemata.- F.2. Operator Schemata.- F.2.1. Primitive Operator Schemata.- References.