Magnetic Field Effects in Low-Dimensional Quantum Magnets: Springer Theses
Autor Adam Iaizzien Limba Engleză Hardback – 10 dec 2018
Din seria Springer Theses
- 5% Preț: 1134.58 lei
- Preț: 383.36 lei
- 15% Preț: 636.05 lei
- 18% Preț: 1199.82 lei
- Preț: 392.61 lei
- 18% Preț: 981.04 lei
- 18% Preț: 925.18 lei
- Preț: 544.53 lei
- 15% Preț: 632.33 lei
- 15% Preț: 631.86 lei
- 15% Preț: 628.49 lei
- 20% Preț: 558.82 lei
- 18% Preț: 927.51 lei
- 18% Preț: 1097.42 lei
- 15% Preț: 629.29 lei
- 15% Preț: 629.29 lei
- Preț: 276.68 lei
- 15% Preț: 625.74 lei
- 18% Preț: 876.13 lei
- 15% Preț: 630.09 lei
- Preț: 383.18 lei
- 20% Preț: 563.89 lei
- Preț: 386.77 lei
- 15% Preț: 627.18 lei
- 15% Preț: 631.05 lei
- 18% Preț: 1093.52 lei
- 20% Preț: 551.36 lei
- 18% Preț: 1085.00 lei
- 18% Preț: 1091.20 lei
- 18% Preț: 1205.23 lei
- 18% Preț: 929.05 lei
- 18% Preț: 928.27 lei
- 15% Preț: 629.29 lei
- 18% Preț: 1208.34 lei
- 15% Preț: 629.29 lei
- 18% Preț: 1196.72 lei
- 15% Preț: 626.08 lei
- 18% Preț: 983.98 lei
- 15% Preț: 625.26 lei
- 15% Preț: 630.09 lei
- Preț: 380.72 lei
- 18% Preț: 982.57 lei
- Preț: 378.80 lei
- Preț: 378.80 lei
- 18% Preț: 1091.20 lei
- 18% Preț: 1091.98 lei
- Preț: 380.52 lei
- 15% Preț: 626.41 lei
- 20% Preț: 554.20 lei
- 20% Preț: 555.57 lei
Preț: 768.27 lei
Preț vechi: 936.93 lei
-18% Nou
Puncte Express: 1152
Preț estimativ în valută:
147.08€ • 151.26$ • 122.01£
147.08€ • 151.26$ • 122.01£
Carte tipărită la comandă
Livrare economică 19 februarie-05 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030018023
ISBN-10: 3030018024
Pagini: 230
Ilustrații: XIX, 156 p. 34 illus., 31 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.43 kg
Ediția:1st ed. 2018
Editura: Springer International Publishing
Colecția Springer
Seria Springer Theses
Locul publicării:Cham, Switzerland
ISBN-10: 3030018024
Pagini: 230
Ilustrații: XIX, 156 p. 34 illus., 31 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.43 kg
Ediția:1st ed. 2018
Editura: Springer International Publishing
Colecția Springer
Seria Springer Theses
Locul publicării:Cham, Switzerland
Cuprins
Chapter1. Introduction.- Chapter2. Saturation Transition in the 1D J-Q Model.- Chapter3. Saturation Transition in the 2D J-Q Model.- Chapter4. Signatures of Deconned Quantum Criticality in the 2D J-Q-h Model.- Chapter5. Methods.- Chapter6. Conclusions.
Notă biografică
Adam Iaizzi received his PhD from Boston University in 2018. He now holds a postdoctoral position at National Taiwan University.
Textul de pe ultima copertă
This thesis is a tour-de-force combination of analytic and computational results clarifying and resolving important questions about the nature of quantum phase transitions in one- and two-dimensional magnetic systems. The author presents a comprehensive study of a low-dimensional spin-half quantum antiferromagnet (the J-Q model) in the presence of a magnetic field in both one and two dimensions, demonstrating the causes of metamagnetism in such systems and providing direct evidence of fractionalized excitations near the deconfined quantum critical point. In addition to describing significant new research results, this thesis also provides the non-expert with a clear understanding of the nature and importance of computational physics and its role in condensed matter physics as well as the nature of phase transitions, both classical and quantum. It also contains an elegant and detailed but accessible summary of the methods used in the thesis—exact diagonalization, Monte Carlo, quantum Monte Carlo and the stochastic series expansion—that will serve as a valuable pedagogical introduction to students beginning in this field.
Caracteristici
Nominated as an outstanding PhD thesis by Boston University New results on quantum phase transitions in magnetic systems such as metamagnetism and deconfined quantum criticality Accessible introduction to condensed matter physics focusing on phase transitions Highlights women computational physicists, focusing on Arianna Rosenbluth and the Metropolis Algorithm Provides a detailed pedagogical guide to quantum Monte Carlo