Markov Chain Models — Rarity and Exponentiality: Applied Mathematical Sciences, cartea 28
Autor J. Keilsonen Limba Engleză Paperback – 23 apr 1979
Din seria Applied Mathematical Sciences
- 13% Preț: 429.99 lei
- 13% Preț: 429.50 lei
- 13% Preț: 430.69 lei
- 24% Preț: 906.78 lei
- 23% Preț: 659.05 lei
- 19% Preț: 743.16 lei
- 18% Preț: 861.38 lei
- 18% Preț: 753.01 lei
- 18% Preț: 900.25 lei
- 15% Preț: 611.40 lei
- 24% Preț: 808.03 lei
- Preț: 382.65 lei
- Preț: 428.86 lei
- Preț: 180.12 lei
- Preț: 378.18 lei
- 18% Preț: 915.78 lei
- 15% Preț: 609.54 lei
- 15% Preț: 500.97 lei
- Preț: 391.48 lei
- Preț: 369.79 lei
- 18% Preț: 697.13 lei
- 18% Preț: 1336.30 lei
- 15% Preț: 673.66 lei
- Preț: 374.72 lei
- 18% Preț: 963.44 lei
- Preț: 382.00 lei
- 18% Preț: 1070.34 lei
- 18% Preț: 1074.80 lei
- 18% Preț: 1315.29 lei
- 18% Preț: 1069.87 lei
- 18% Preț: 1080.35 lei
- 15% Preț: 618.68 lei
Preț: 363.80 lei
Nou
Puncte Express: 546
Preț estimativ în valută:
69.66€ • 75.35$ • 58.05£
69.66€ • 75.35$ • 58.05£
Carte tipărită la comandă
Livrare economică 11-25 decembrie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387904054
ISBN-10: 0387904050
Pagini: 184
Ilustrații: XIV, 184 p.
Dimensiuni: 155 x 233 x 13 mm
Greutate: 0.32 kg
Ediția:Softcover reprint of the original 1st ed. 1979
Editura: Springer
Colecția Springer
Seria Applied Mathematical Sciences
Locul publicării:New York, NY, United States
ISBN-10: 0387904050
Pagini: 184
Ilustrații: XIV, 184 p.
Dimensiuni: 155 x 233 x 13 mm
Greutate: 0.32 kg
Ediția:Softcover reprint of the original 1st ed. 1979
Editura: Springer
Colecția Springer
Seria Applied Mathematical Sciences
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
0. Introduction and Summary.- 1. Discrete Time Markov Chains; Reversibility in Time.- §1.00. Introduction.- §1.0. Notation, Transition Laws.- §1.1. Irreducibility, Aperiodicity, Ergodicity; Stationary Chains.- §1.2. Approach to Ergodicity; Spectral Structure, Perron-Romanovsky-Frobenius Theorem.- §1.3. Time-Reversible Chains.- 2. Markov Chains in Continuous Time; Uniformization; Reversibility.- §2.00. Introduction.- §2.0. Notation, Transition Laws; A Review.- §2.1. Uniformizable Chains — A Bridge Between Discrete and Continuous Time Chains.- §2.2. Advantages and Prevalence of Uniformizable Chains.- §2.3. Ergodicity for Continuous Time Chains.- §2.4. Reversibility for Ergodic Markov Chains in Continuous Time.- §2.5. Prevalence of Time-Reversibility.- 3. More on Time-Reversibility; Potential Coefficients; Process Modification.- §3.00. Introduction.- §3.1. The Advantages of Time-Reversibility.- §3.2. The Spectral Representation.- §3.3. Potentials; Spectral Representation.- §3.4. More General Time-Reversible Chains.- §3.5. Process Modifications Preserving Reversibility.- §3.6. Replacement Processes.- 4. Potential Theory, Replacement, and Compensation.- §4.00. Introduction.- §4.1. The Green Potential.- §4.2. The Ergodic Distribution for a Replacement Process.- §4.3. The Compensation Method.- §4.4. Notation for the Homogeneous Random Walk.- §4.5. The Compensation Method Applied to the Homogeneous Random Walk Modified by Boundaries.- §4.6. Advantages of the Compensation Method. An Illustrative Example.- §4.7. Exploitation of the Structure of the Green Potential for the Homogeneous Random Walk.- §4.8. Similar Situations.- 5. Passage Time Densities in Birth-Death Processes; Distribution Structure.- §5.00. Introduction.- §5.1. Passage TimeDensities for Birth-Death Processes.- §5.2. Passage Time Moments for a Birth-Death Process.- §5.3. PF?, Complete Monotonicity, Log-Concavity and Log-Convexity.- §5.4. Complete Monotonicity and Log-Convexity.- §5.5. Complete Monotonicity in Time-Reversible Processes.- §5.6. Some Useful Inequalities for the Families CM and PF?.- §5.7. Log-Concavity and Strong Unimodality for Lattice Distributions.- §5.8. Preservation of Log-Concavity and Log-Convexity under Tail Summation and Integration.- §5.9. Relation of CM and PF? to IFR and DFR Classes in Reliability.- 6. Passage Times and Exit Times for More General Chains.- §6.00. Introduction.- §6.1. Passage Time Densities to a Set of States.- §6.2. Mean Passage Times to a Set via the Green Potential.- §6.3. Ruin Probabilities via the Green Potential.- §6.4. Ergodic Flow Rates in a Chain.- §6.5. Ergodic Exit Times, Ergodic Sojourn Times, and Quasi-Stationary Exit Times.- §6.6. The Quasi-Stationary Exit Time. A Limit Theorem.- §6.7. The Connection Between Exit Times and Sojourn Times. A Renewal Theorem.- §6.8. A Comparison of the Mean Ergodic Exit Time and Mean Ergodic Sojourn Time for Arbitrary Chains.- §6.9. Stochastic Ordering of Exit Times of Interest for Time-Reversible Chains.- §6.10. Superiority of the Exit Time as System Failure Time; Jitter.- 7. The Fundamental Matrix, and Allied Topics.- §7.00. Introduction.- §7.1. The Fundamental Matrix for Ergodic Chains.- §7.2. The Structure of the Fundamental Matrix for Time-Reversible Chains.- §7.3. Mean Failure Times and Ruin Probabilities for Systems with Independent Markov Components and More General Chains.- §7.4. Covariance and Spectral Density Structure for Time-Reversible Processes.- §7.5. A Central Limit Theorem.- §7.6. Regeneration Times andPassage Times-Their Relation For Arbitrary Chains.- §7.7. Passage to a Set with Two States.- 8. Rarity and Exponentiality.- §8.0. Introduction.- §8.1. Passage Time Density Structure for Finite Ergodic Chains; the Exponential Approximation.- §8.2. A Limit Theorem for Ergodic Regenerative Processes.- §8.3. Prototype Behavior: Birth-Death Processes; Strongly Stable Systems.- §8.4. Limiting Behavior of the Ergodic and Quasi-stationary Exit Time Densities and Sojourn Time Densities for Birth-Death Processes.- §8.5. Limit Behavior of Other Exit Times for More General Chains.- §8.6. Strongly Stable Chains, Jitter; Estimation of the Failure Time Needed for the Exponential Approximation.- §8.7. A Measure of Exponentiality in the Completely Monotone Class of Densities.- §8.8. An Error Bound for Departure from Exponentiality in the Completely Monotone Class.- §8.9. The Exponential Approximation for Time-Reversible Systems.- §8.10. A Relaxation Time of Interest.- 9. Stochastic Monotonicity.- §9.00. Introduction.- §9.1. Monotone Markov Matrices and Monotone Chains.- §9.2. Some Monotone Chains in Discrete Time.- §9.3. Monotone Chains in Continuous Time.- §9.4. Other Monotone Processes in Continuous Time.- References.