Mathematical Analysis: An Introduction: Undergraduate Texts in Mathematics
Autor Andrew Browderen Limba Engleză Hardback – 15 dec 1995
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 448.34 lei 6-8 săpt. | |
Springer – 8 oct 2012 | 448.34 lei 6-8 săpt. | |
Hardback (1) | 455.16 lei 6-8 săpt. | |
Springer – 15 dec 1995 | 455.16 lei 6-8 săpt. |
Din seria Undergraduate Texts in Mathematics
- 17% Preț: 362.13 lei
- 17% Preț: 365.42 lei
- Preț: 425.12 lei
- 17% Preț: 373.59 lei
- Preț: 404.13 lei
- Preț: 402.33 lei
- Preț: 276.55 lei
- Preț: 367.40 lei
- Preț: 407.96 lei
- 19% Preț: 368.78 lei
- 17% Preț: 368.60 lei
- Preț: 359.48 lei
- 19% Preț: 400.52 lei
- Preț: 400.42 lei
- Preț: 430.01 lei
- Preț: 387.16 lei
- Preț: 424.14 lei
- 17% Preț: 366.38 lei
- 17% Preț: 398.51 lei
- Preț: 290.80 lei
- 17% Preț: 395.93 lei
- 15% Preț: 417.73 lei
- Preț: 414.73 lei
- Preț: 298.00 lei
- Preț: 326.97 lei
- Preț: 407.62 lei
- Preț: 332.02 lei
- 17% Preț: 362.67 lei
- Preț: 358.10 lei
- Preț: 397.68 lei
- 17% Preț: 367.24 lei
- Preț: 431.15 lei
- Preț: 364.40 lei
- Preț: 398.77 lei
- Preț: 400.42 lei
- Preț: 353.62 lei
- 19% Preț: 492.82 lei
- Preț: 388.27 lei
- Preț: 382.24 lei
- 15% Preț: 510.52 lei
- Preț: 393.93 lei
- 15% Preț: 521.01 lei
- 15% Preț: 438.78 lei
- 15% Preț: 522.76 lei
- Preț: 382.24 lei
- 15% Preț: 563.80 lei
- 15% Preț: 452.60 lei
Preț: 455.16 lei
Nou
Puncte Express: 683
Preț estimativ în valută:
87.12€ • 90.55$ • 72.16£
87.12€ • 90.55$ • 72.16£
Carte tipărită la comandă
Livrare economică 04-18 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387946146
ISBN-10: 0387946144
Pagini: 335
Ilustrații: XIV, 335 p.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.66 kg
Ediția:1996
Editura: Springer
Colecția Springer
Seria Undergraduate Texts in Mathematics
Locul publicării:New York, NY, United States
ISBN-10: 0387946144
Pagini: 335
Ilustrații: XIV, 335 p.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.66 kg
Ediția:1996
Editura: Springer
Colecția Springer
Seria Undergraduate Texts in Mathematics
Locul publicării:New York, NY, United States
Public țintă
Lower undergraduateCuprins
1 Real Numbers.- 1.1 Sets, Relations, Functions.- 1.2 Numbers.- 1.3 Infinite Sets.- 1.4 Incommensurability.- 1.5 Ordered Fields.- 1.6 Functions on R.- 1.7 Intervals in R.- 1.8 Algebraic and Transcendental Numbers.- 1.9 Existence of R.- 1.10 Exercises.- 1.11 Notes.- 2 Sequences and Series.- 2.1 Sequences.- 2.2 Continued Fractions.- 2.3 Infinite Series.- 2.4 Rearrangements of Series.- 2.5 Unordered Series.- 2.6 Exercises.- 2.7 Notes.- 3 Continuous Functions on Intervals.- 3.1 Limits and Continuity.- 3.2 Two Fundamental Theorems.- 3.3 Uniform Continuity.- 3.4 Sequences of Functions.- 3.5 The Exponential function.- 3.6 Trigonometric Functions.- 3.7 Exercises.- 3.8 Notes.- 4 Differentiation.- 4.1 Derivatives.- 4.2 Derivatives of Some Elementary Functions.- 4.3 Convex Functions.- 4.4 The Differential Calculus.- 4.5 L’Hospital’s Rule.- 4.6 Higher Order Derivatives.- 4.7 Analytic Functions.- 4.8 Exercises.- 4.9 Notes.- 5 The Riemann Integral.- 5.1 Riemann Sums.- 5.2 Existence Results.- 5.3 Properties of the Integral.- 5.4 Fundamental Theorems of Calculus.- 5.5 Integrating Sequences and Series.- 5.6 Improper Integrals.- 5.7 Exercises.- 5.8 Notes.- 6 Topology.- 6.1 Topological Spaces.- 6.2 Continuous Mappings.- 6.3 Metric Spaces.- 6.4 Constructing Topological Spaces.- 6.5 Sequences.- 6.6 Compactness.- 6.7 Connectedness.- 6.8 Exercises.- 6.9 Notes.- 7 Function Spaces.- 7.1 The Weierstrass Polynomial Approximation Theorem . . ..- 7.2 Lengths of Paths.- 7.3 Fourier Series.- 7.4 Weyl’s Theorem.- 7.5 Exercises.- 7.6 Notes.- 8 Differentiable Maps.- 8.1 Linear Algebra.- 8.2 Differentials.- 8.3 The Mean Value Theorem.- 8.4 Partial Derivatives.- 8.5 Inverse and Implicit Functions.- 8.6 Exercises.- 8.7 Notes.- 9 Measures.- 9.1 Additive Set Functions.- 9.2 Countable Additivity.- 9.3Outer Measures.- 9.4 Constructing Measures.- 9.5 Metric Outer Measures.- 9.6 Measurable Sets.- 9.7 Exercises.- 9.8 Notes.- 10 Integration.- 10.1 Measurable Functions.- 10.2 Integration.- 10.3 Lebesgue and Riemann Integrals.- 10.4 Inequalities for Integrals.- 10.5 Uniqueness Theorems.- 10.6 Linear Transformations.- 10.7 Smooth Transformations.- 10.8 Multiple and Repeated Integrals.- 10.9 Exercises.- 10.10 Notes.- 11 Manifolds.- 11.1 Definitions.- 11.2 Constructing Manifolds.- 11.3 Tangent Spaces.- 11.4 Orientation.- 11.5 Exercises.- 11.6 Notes.- 12 Multilinear Algebra.- 12.1 Vectors and Tensors.- 12.2 Alternating Tensors.- 12.3 The Exterior Product.- 12.4 Change of Coordinates.- 12.5 Exercises.- 12.6 Notes.- 13 Differential Forms.- 13.1 Tensor Fields.- 13.2 The Calculus of Forms.- 13.3 Forms and Vector Fields.- 13.4 Induced Mappings.- 13.5 Closed and Exact Forms.- 13.6 Tensor Fields on Manifolds.- 13.7 Integration of Forms in Rn.- 13.8 Exercises.- 13.9 Notes.- 14 Integration on Manifolds.- 14.1 Partitions of Unity.- 14.2 Integrating k-Forms.- 14.3 The Brouwer Fixed Point Theorem.- 14.4 Integrating Functions on a Manifold.- 14.5 Vector Analysis.- 14.6 Harmonic Functions.- 14.7 Exercises.- 14.8 Notes.- References.
Recenzii
This is a very good textbook presenting a modern course in analysis both at the advanced undergraduate and at the beginning graduate level. It contains 14 chapters, a bibliography, and an index. At the end of each chapter interesting exercises and historical notes are enclosed.\par From the cover: ``The book begins with a brief discussion of sets and mappings, describes the real number field, and proceeds to a treatment of real-valued functions of a real variable. Separate chapters are devoted to the ideas of convergent sequences and series, continuous functions, differentiation, and the Riemann integral (of a real-valued function defined on a compact interval). The middle chapters cover general topology and a miscellany of applications: the Weierstrass and Stone-Weierstrass approximation theorems, the existence of geodesics in compact metric spaces, elements of Fourier analysis, and the Weyl equidistribution theorem. Next comes a discussion of differentiation of vector-valued functions of several real variables, followed by a brief treatment of measure and integration (in a general setting, but with emphasis on Lebesgue theory in Euclidean spaces). The final part of the book deals with manifolds, differential forms, and Stokes' theorem [in the spirit of M. Spivak's: ``Calculus on manifolds'' (1965; Zbl 141.05403)] which is applied to prove Brouwer's fixed point theorem and to derive the basic properties of harmonic functions, such as the Dirichlet principle''. ZENTRALBLATT MATH
A. Browder
Mathematical Analysis
An Introduction
"Everything needed is clearly defined and formulated, and there is a reasonable number of examples…. Anyone teaching a year course at this level to should seriously consider this carefully written book. In the reviewer's opinion, it would be a real pleasure to use this text with such a class."—MATHEMATICAL REVIEWS
A. Browder
Mathematical Analysis
An Introduction
"Everything needed is clearly defined and formulated, and there is a reasonable number of examples…. Anyone teaching a year course at this level to should seriously consider this carefully written book. In the reviewer's opinion, it would be a real pleasure to use this text with such a class."—MATHEMATICAL REVIEWS