Mathematical Foundations of Computer Science: Sets, Relations, and Induction: Monographs in Computer Science
Autor Peter A. Fejer, Dan A. Simovicien Limba Engleză Paperback – 27 dec 2011
Din seria Monographs in Computer Science
- 20% Preț: 511.92 lei
- 20% Preț: 333.22 lei
- 20% Preț: 1285.31 lei
- 20% Preț: 328.60 lei
- 15% Preț: 646.94 lei
- 20% Preț: 357.48 lei
- 20% Preț: 339.47 lei
- 20% Preț: 653.21 lei
- 20% Preț: 329.44 lei
- 20% Preț: 993.74 lei
- 20% Preț: 992.26 lei
- 20% Preț: 1630.95 lei
- 20% Preț: 656.03 lei
- 20% Preț: 650.08 lei
- 20% Preț: 328.09 lei
- 20% Preț: 641.16 lei
- 20% Preț: 334.38 lei
- 18% Preț: 737.74 lei
- 20% Preț: 642.19 lei
- 20% Preț: 641.99 lei
- 20% Preț: 1462.66 lei
- 20% Preț: 345.59 lei
- 20% Preț: 1001.16 lei
- 20% Preț: 711.29 lei
- 20% Preț: 661.47 lei
- 20% Preț: 343.62 lei
- 20% Preț: 644.81 lei
- 15% Preț: 505.30 lei
- 20% Preț: 640.69 lei
- 18% Preț: 956.81 lei
- 20% Preț: 592.68 lei
- 20% Preț: 329.44 lei
- Preț: 383.33 lei
- 20% Preț: 349.40 lei
- 20% Preț: 832.40 lei
- 20% Preț: 993.42 lei
- 15% Preț: 578.87 lei
- 20% Preț: 337.85 lei
- 20% Preț: 988.16 lei
- 20% Preț: 996.56 lei
- 20% Preț: 1293.37 lei
- 20% Preț: 1452.94 lei
Preț: 396.78 lei
Nou
Puncte Express: 595
Preț estimativ în valută:
75.93€ • 78.79$ • 63.47£
75.93€ • 78.79$ • 63.47£
Carte tipărită la comandă
Livrare economică 17-31 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461277927
ISBN-10: 1461277922
Pagini: 444
Ilustrații: X, 425 p.
Dimensiuni: 155 x 235 x 23 mm
Greutate: 0.62 kg
Ediția:Softcover reprint of the original 1st ed. 1991
Editura: Springer
Colecția Springer
Seria Monographs in Computer Science
Locul publicării:New York, NY, United States
ISBN-10: 1461277922
Pagini: 444
Ilustrații: X, 425 p.
Dimensiuni: 155 x 235 x 23 mm
Greutate: 0.62 kg
Ediția:Softcover reprint of the original 1st ed. 1991
Editura: Springer
Colecția Springer
Seria Monographs in Computer Science
Locul publicării:New York, NY, United States
Public țintă
GraduateCuprins
1 Elementary Set Theory.- 1.1 Introduction.- 1.2 Sets, Members, Subsets.- 1.3 Building New Sets.- 1.4 Exercises and Supplements.- 1.5 Bibliographical Comments.- 2 Relations and Functions.- 2.1 Introduction.- 2.2 Relations.- 2.3 Functions.- 2.4 Sequences, Words, and Matrices.- 2.5 Images of Sets Under Relations.- 2.6 Relations and Directed Graphs.- 2.7 Special Classes of Relations.- 2.8 Equivalences and Partitions.- 2.9 General Cartesian Products.- 2.10 Operations.- 2.11 Representations of Relations and Graphs.- 2.12 Relations and Databases.- 2.13 Exercises and Supplements.- 2.14 Bibliographical Comments.- 3 Partially Ordered Sets.- 3.1 Introduction.- 3.2 Partial Orders and Hasse Diagrams.- 3.3 Special Elements of Partially Ordered Sets.- 3.4 Chains.- 3.5 Duality.- 3.6 Constructing New Posets.- 3.7 Functions and Posets.- 3.8 Complete Partial Orders.- 3.9 The Axiom of Choice and Zorn’s Lemma.- 3.10 Exercises and Supplements.- 3.11 Bibliographical Comments.- 4 Induction.- 4.1 Introduction.- 4.2 Induction on the Natural Numbers.- 4.3 Inductively Defined Sets.- 4.4 Proof by Structural Induction.- 4.5 Recursive Definitions of Functions.- 4.6 Constructors.- 4.7 Simultaneous Inductive Definitions.- 4.8 Propositional Logic.- 4.9 Primitive Recursive and Partial Recursive Functions.- 4.10 Grammars.- 4.11 Peano’s Axioms.- 4.12 Well-Founded Sets and Induction.- 4.13 Fixed Points and Fixed Point Induction.- 4.14 Exercises and Supplements.- 4.15 Bibliographical Comments.- 5 Enumerability and Diagonalization.- 5.1 Introduction.- 5.2 Equinumerous Sets.- 5.3 Countable and Uncountable Sets.- 5.4 Enumerating Programs.- 5.5 Abstract Families of Functions.- 5.6 Exercises and Supplements.- 5.7 Bibliographical Comments.- References.