Mathematical Foundations of Computer Science: Sets, Relations, and Induction: Monographs in Computer Science
Autor Peter A. Fejer, Dan A. Simovicien Limba Engleză Paperback – 27 dec 2011
Din seria Monographs in Computer Science
- 20% Preț: 1209.56 lei
- 20% Preț: 501.59 lei
- 20% Preț: 1259.22 lei
- 20% Preț: 326.52 lei
- 20% Preț: 321.99 lei
- 15% Preț: 633.86 lei
- 20% Preț: 350.28 lei
- 20% Preț: 332.64 lei
- 20% Preț: 639.99 lei
- 20% Preț: 322.81 lei
- 20% Preț: 973.60 lei
- 20% Preț: 972.14 lei
- 20% Preț: 1597.85 lei
- 20% Preț: 642.77 lei
- 20% Preț: 636.92 lei
- 20% Preț: 321.49 lei
- 20% Preț: 628.19 lei
- 20% Preț: 327.66 lei
- 18% Preț: 722.82 lei
- 20% Preț: 629.20 lei
- 20% Preț: 629.01 lei
- 20% Preț: 338.63 lei
- 20% Preț: 696.89 lei
- 20% Preț: 980.88 lei
- 20% Preț: 648.08 lei
- 20% Preț: 336.71 lei
- 20% Preț: 631.75 lei
- 15% Preț: 495.12 lei
- 20% Preț: 627.74 lei
- 18% Preț: 937.43 lei
- 20% Preț: 580.69 lei
- 20% Preț: 322.81 lei
- Preț: 375.65 lei
- 20% Preț: 342.36 lei
- 20% Preț: 815.54 lei
- 20% Preț: 973.29 lei
- 15% Preț: 567.18 lei
- 20% Preț: 331.04 lei
- 20% Preț: 968.12 lei
- 20% Preț: 976.35 lei
- 20% Preț: 1267.14 lei
- 20% Preț: 1423.46 lei
Preț: 388.82 lei
Nou
Puncte Express: 583
Preț estimativ în valută:
74.41€ • 77.29$ • 61.81£
74.41€ • 77.29$ • 61.81£
Carte tipărită la comandă
Livrare economică 03-17 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461277927
ISBN-10: 1461277922
Pagini: 444
Ilustrații: X, 425 p.
Dimensiuni: 155 x 235 x 23 mm
Greutate: 0.62 kg
Ediția:Softcover reprint of the original 1st ed. 1991
Editura: Springer
Colecția Springer
Seria Monographs in Computer Science
Locul publicării:New York, NY, United States
ISBN-10: 1461277922
Pagini: 444
Ilustrații: X, 425 p.
Dimensiuni: 155 x 235 x 23 mm
Greutate: 0.62 kg
Ediția:Softcover reprint of the original 1st ed. 1991
Editura: Springer
Colecția Springer
Seria Monographs in Computer Science
Locul publicării:New York, NY, United States
Public țintă
GraduateCuprins
1 Elementary Set Theory.- 1.1 Introduction.- 1.2 Sets, Members, Subsets.- 1.3 Building New Sets.- 1.4 Exercises and Supplements.- 1.5 Bibliographical Comments.- 2 Relations and Functions.- 2.1 Introduction.- 2.2 Relations.- 2.3 Functions.- 2.4 Sequences, Words, and Matrices.- 2.5 Images of Sets Under Relations.- 2.6 Relations and Directed Graphs.- 2.7 Special Classes of Relations.- 2.8 Equivalences and Partitions.- 2.9 General Cartesian Products.- 2.10 Operations.- 2.11 Representations of Relations and Graphs.- 2.12 Relations and Databases.- 2.13 Exercises and Supplements.- 2.14 Bibliographical Comments.- 3 Partially Ordered Sets.- 3.1 Introduction.- 3.2 Partial Orders and Hasse Diagrams.- 3.3 Special Elements of Partially Ordered Sets.- 3.4 Chains.- 3.5 Duality.- 3.6 Constructing New Posets.- 3.7 Functions and Posets.- 3.8 Complete Partial Orders.- 3.9 The Axiom of Choice and Zorn’s Lemma.- 3.10 Exercises and Supplements.- 3.11 Bibliographical Comments.- 4 Induction.- 4.1 Introduction.- 4.2 Induction on the Natural Numbers.- 4.3 Inductively Defined Sets.- 4.4 Proof by Structural Induction.- 4.5 Recursive Definitions of Functions.- 4.6 Constructors.- 4.7 Simultaneous Inductive Definitions.- 4.8 Propositional Logic.- 4.9 Primitive Recursive and Partial Recursive Functions.- 4.10 Grammars.- 4.11 Peano’s Axioms.- 4.12 Well-Founded Sets and Induction.- 4.13 Fixed Points and Fixed Point Induction.- 4.14 Exercises and Supplements.- 4.15 Bibliographical Comments.- 5 Enumerability and Diagonalization.- 5.1 Introduction.- 5.2 Equinumerous Sets.- 5.3 Countable and Uncountable Sets.- 5.4 Enumerating Programs.- 5.5 Abstract Families of Functions.- 5.6 Exercises and Supplements.- 5.7 Bibliographical Comments.- References.