Mathematical Statistics: Basic Ideas and Selected Topics, Volume II: Chapman & Hall/CRC Texts in Statistical Science
Autor Peter J. Bickel, Kjell A. Doksumen Limba Engleză Hardback – 2 noi 2015
The book covers asymptotic efficiency in semiparametric models from the Le Cam and Fisherian points of view as well as some finite sample size optimality criteria based on Lehmann–Scheffé theory. It develops the theory of semiparametric maximum likelihood estimation with applications to areas such as survival analysis. It also discusses methods of inference based on sieve models and asymptotic testing theory. The remainder of the book is devoted to model and variable selection, Monte Carlo methods, nonparametric curve estimation, and prediction, classification, and machine learning topics. The necessary background material is included in an appendix.
Using the tools and methods developed in this textbook, students will be ready for advanced research in modern statistics. Numerous examples illustrate statistical modeling and inference concepts while end-of-chapter problems reinforce elementary concepts and introduce important new topics. As in Volume I, measure theory is not required for understanding.
The solutions to exercises for Volume II are included in the back of the book.
Check out Volume I for fundamental, classical statistical concepts leading to the material in this volume.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Hardback (2) | 611.54 lei 3-5 săpt. | +41.84 lei 7-13 zile |
CRC Press – 2 noi 2015 | 611.54 lei 3-5 săpt. | +41.84 lei 7-13 zile |
CRC Press – 13 apr 2015 | 681.68 lei 3-5 săpt. | +47.60 lei 7-13 zile |
Din seria Chapman & Hall/CRC Texts in Statistical Science
- 5% Preț: 635.71 lei
- 8% Preț: 572.20 lei
- 8% Preț: 548.93 lei
- 5% Preț: 395.90 lei
- 9% Preț: 595.00 lei
- 9% Preț: 772.11 lei
- 8% Preț: 544.47 lei
- 9% Preț: 641.60 lei
- 8% Preț: 487.35 lei
- 8% Preț: 551.97 lei
- 9% Preț: 1080.81 lei
- 9% Preț: 613.84 lei
- 9% Preț: 609.24 lei
- 9% Preț: 581.19 lei
- Preț: 389.37 lei
- 9% Preț: 578.21 lei
- Preț: 371.71 lei
- 8% Preț: 548.14 lei
- 9% Preț: 602.45 lei
- 9% Preț: 593.60 lei
- 9% Preț: 608.07 lei
- 8% Preț: 496.94 lei
- 9% Preț: 610.93 lei
- 20% Preț: 515.53 lei
- Preț: 357.59 lei
- 8% Preț: 495.89 lei
- Preț: 341.42 lei
- 8% Preț: 547.09 lei
- Preț: 355.65 lei
- 8% Preț: 536.31 lei
- 8% Preț: 465.05 lei
- 9% Preț: 617.40 lei
- Preț: 349.09 lei
- 9% Preț: 681.68 lei
- Preț: 356.63 lei
- 8% Preț: 547.27 lei
- 9% Preț: 599.18 lei
- Preț: 316.73 lei
- Preț: 341.85 lei
- Preț: 356.63 lei
- 9% Preț: 595.90 lei
- 8% Preț: 418.95 lei
- 11% Preț: 686.52 lei
- 8% Preț: 510.12 lei
- 8% Preț: 511.06 lei
- 8% Preț: 563.39 lei
- 18% Preț: 713.39 lei
Preț: 611.54 lei
Preț vechi: 672.02 lei
-9% Nou
Puncte Express: 917
Preț estimativ în valută:
117.04€ • 121.72$ • 97.94£
117.04€ • 121.72$ • 97.94£
Carte disponibilă
Livrare economică 22 februarie-08 martie
Livrare express 08-14 februarie pentru 51.83 lei
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781498722681
ISBN-10: 1498722687
Pagini: 488
Ilustrații: 1 black & white illustrations
Dimensiuni: 178 x 254 x 28 mm
Greutate: 1.06 kg
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC
Seria Chapman & Hall/CRC Texts in Statistical Science
Locul publicării:Boca Raton, United States
ISBN-10: 1498722687
Pagini: 488
Ilustrații: 1 black & white illustrations
Dimensiuni: 178 x 254 x 28 mm
Greutate: 1.06 kg
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC
Seria Chapman & Hall/CRC Texts in Statistical Science
Locul publicării:Boca Raton, United States
Cuprins
Introduction and Examples. Tools for Asymptotic Analysis. Distribution-Free, Unbiased, and Equivariant Procedures. Inference in Semiparametric Models. Monte Carlo Methods. Nonparametric Inference for Functions of One Variable. Prediction and Machine Learning. Appendices. References. Indices.
Notă biografică
Peter J. Bickel is a professor emeritus in the Department of Statistics and a professor in the Graduate School at the University of California, Berkeley. Dr. Bickel is a member of the American Academy of Arts and Sciences and the National Academy of Sciences. He has been a Guggenheim Fellow and MacArthur Fellow, a recipient of the COPSS Presidents’ Award, and president of the Bernoulli Society and the Institute of Mathematical Statistics. He holds honorary doctorate degrees from the Hebrew University of Jerusalem and ETH Zurich.
Kjell A. Doksum is a senior scientist in the Department of Statistics at the University of Wisconsin–Madison. His research encompasses the estimation of nonparametric regression and correlation curves, inference for global measures of association in semiparametric and nonparametric settings, the estimation of regression quantiles, statistical modeling and analysis of HIV data, the analysis of financial data, and Bayesian nonparametric inference.
Kjell A. Doksum is a senior scientist in the Department of Statistics at the University of Wisconsin–Madison. His research encompasses the estimation of nonparametric regression and correlation curves, inference for global measures of association in semiparametric and nonparametric settings, the estimation of regression quantiles, statistical modeling and analysis of HIV data, the analysis of financial data, and Bayesian nonparametric inference.
Recenzii
" . . . the authors have done a superb job of selecting topics comprising most of the essential knowledge needed formodern research. Furthermore, these modern topics are considered with greater depth and sophistication than is usual in a general purpose text. And throughout its pages the book does a good job of linking the mathematical developments to major examples. The choice of topics and examples, along with the depth of coverage are the most attractive features of this volume."
~RobertW. Keener, University of Michigan
~RobertW. Keener, University of Michigan
Descriere
This second volume focuses on inference in non- and semiparametric models, including topics in machine learning. It not only reexamines the procedures introduced in the authors’ first volume from a more sophisticated point of view but also addresses new problems originating from the analysis of estimation of functions and other complex decision procedures and large-scale data analysis. Numerous examples and problems illustrate statistical modeling and inference concepts. Measure theory is not required for understanding.