Cantitate/Preț
Produs

Medical Statistics for Cancer Studies: Chapman & Hall/CRC Biostatistics Series

Autor Trevor F. Cox
en Limba Engleză Paperback – 26 aug 2024
Cancer is a dreaded disease. One in two people will be diagnosed with cancer within their lifetime. Medical Statistics for Cancer Studies shows how cancer data can be analysed in a variety of ways, covering cancer clinical trial data, epidemiological data, biological data, and genetic data. It gives some background in cancer biology and genetics, followed by detailed overviews of survival analysis, clinical trials, regression analysis, epidemiology, meta-analysis, biomarkers, and cancer informatics. It includes lots of examples using real data from the author’s many years of experience working in a cancer clinical trials unit.
Features:
  • A broad and accessible overview of statistical methods in cancer research
  • Necessary background in cancer biology and genetics
  • Details of statistical methodology with minimal algebra
  • Many examples using real data from cancer clinical trials
  • Appendix giving statistics revision.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 40829 lei  6-8 săpt.
  CRC Press – 26 aug 2024 40829 lei  6-8 săpt.
Hardback (1) 76194 lei  6-8 săpt.
  CRC Press – 23 iun 2022 76194 lei  6-8 săpt.

Din seria Chapman & Hall/CRC Biostatistics Series

Preț: 40829 lei

Preț vechi: 42979 lei
-5% Nou

Puncte Express: 612

Preț estimativ în valută:
7815 8053$ 6597£

Carte tipărită la comandă

Livrare economică 03-17 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781032285870
ISBN-10: 1032285877
Pagini: 334
Ilustrații: 246
Dimensiuni: 156 x 234 mm
Greutate: 0.62 kg
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC
Seria Chapman & Hall/CRC Biostatistics Series

Locul publicării:Boca Raton, United States

Cuprins

1 Introduction. 1.1. About Cancer. 1.2. Cancer studies. 1.3. R Code. 2. Cancer Biology and Genetics for Non-Biologists. 2.1. Cells. 2.2. DNA, Genes, RNA and Proteins. 2.3. Cancer – DNA Gone Wrong. 2.4. Cancer Treatments. 2.5. Measuring Cancer in the Patient. 3. Survival Analysis. 3.1. The Amazing Survival Equations. 3.2. Non-parametric Estimation of Survival Curves. 3.3. Fitting Parametric Survival Curves to Data. 3.4. Comparing Two Survival Distributions. 3.5. The ESPAC4-Trial. 3.6. Comparing Two Parametric Survival Curves. 4. Designing and Running a Clinical Trial. 4.1. Types of Trials and Studies. 4.2. Clinical Trials. 5. Regression Analysis for Survival Data. 5.1. A Weibull Parametric Regression Model. 5.2. Cox Proportional Hazards Model. 5.3. Accelerated Failure Time (AFT) Models. 5.4. Proportional Odds Models. 5.5. Parametric Survival Distributions for PH and AFT Models. 5.6. Flexible Parametric Models. 6. Clinical Trials: The Statistician’s Role. 6.1. Sample Size Calculation. 6.2. Examples of Sample Size Calculations; Phases I to III. 6.3. Group Sequential Designs. 6.4. More Statistical Tasks for Clinical Trials. 7. Cancer Epidemiology. 7.1. Measuring Cancer. 7.2. Cancer Statistics for Countries. 7.3. Cohort Studies. 7.4. Case-control Studies. 7.5. Cross-sectional Studies. 7.6. Spatial Epidemiology. 8. Meta-Analysis. 8.1. How to Carry Out a Systematic Review. 8.2. Fixed Effects Model. 8.3. Random Effects Model. 8.4. Bayesian Meta-analysis. 8.5. Network Meta-analysis. 8.6. Individual Patient Data. 9. Cancer Biomarkers. 9.1. Diagnostic Biomarkers. 9.2. Prognostic Biomarkers. 9.3. Predictive Biomarkers for Pancreatic Cancer. 9.4. Biomarker Trial Design. 10. Cancer Informatics. 10.1. Producing Genetic Data. 10.2. Analysis of Microarray Data. 10.3. Pre-processing NGS Data. 10.4. TCGA-KIRC: Renal Clear Cell Carcinoma.

Notă biografică

Trevor F. Cox is retired from Liverpool Cancer Trials Unit, University of Liverpool, UK

Descriere

This textbook shows how cancer data can be analysed in a variety of ways, covering cancer clinical trial data, epidemiological data, biological data, and genetic data. It provides detailed overviews of survival analysis, clinical trials, regression analysis, epidemiology, meta-analysis, biomarkers, and cancer informatics.