Metaheuristic Clustering: Studies in Computational Intelligence, cartea 178
Autor Swagatam Das, Ajith Abraham, Amit Konaren Limba Engleză Paperback – 28 oct 2010
In this volume, we formulate clustering as an optimization problem, where the best partitioning of a given dataset is achieved by minimizing/maximizing one (single-objective clustering) or more (multi-objective clustering) objective functions. Using several real world applications, we illustrate the performance of several metaheuristics, particularly the Differential Evolution algorithm when applied to both single and multi-objective clustering problems, where the number of clusters is not known beforehand and must be determined on the run. This volume comprises of 7 chapters including an introductory chapter giving the fundamental definitions and the last Chapter provides some important research challenges.
Academics, scientists as well as engineers engaged in research, development and application of optimization techniques and data mining will find the comprehensive coverage of this book invaluable.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 644.33 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 28 oct 2010 | 644.33 lei 6-8 săpt. | |
Hardback (1) | 650.59 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 24 mar 2009 | 650.59 lei 6-8 săpt. |
Din seria Studies in Computational Intelligence
- 50% Preț: 264.48 lei
- 20% Preț: 1158.26 lei
- 20% Preț: 986.66 lei
- 20% Preț: 1452.76 lei
- 20% Preț: 168.78 lei
- 18% Preț: 1112.30 lei
- 20% Preț: 565.38 lei
- 20% Preț: 649.28 lei
- 20% Preț: 1047.73 lei
- 20% Preț: 1578.96 lei
- 20% Preț: 643.50 lei
- 20% Preț: 657.49 lei
- 20% Preț: 993.28 lei
- 20% Preț: 990.80 lei
- 20% Preț: 989.96 lei
- 20% Preț: 1165.69 lei
- 20% Preț: 1444.52 lei
- 20% Preț: 1041.96 lei
- 20% Preț: 1047.73 lei
- 20% Preț: 1046.06 lei
- 18% Preț: 2500.50 lei
- 20% Preț: 989.13 lei
- 20% Preț: 1165.69 lei
- 20% Preț: 1164.05 lei
- 20% Preț: 1042.79 lei
- 20% Preț: 1460.19 lei
- 18% Preț: 1403.52 lei
- 18% Preț: 1124.92 lei
- 20% Preț: 1039.47 lei
- 20% Preț: 1008.11 lei
- 20% Preț: 1045.25 lei
- 20% Preț: 1275.42 lei
- 20% Preț: 1040.32 lei
- 20% Preț: 988.32 lei
- 20% Preț: 1169.79 lei
- 20% Preț: 1162.37 lei
- 20% Preț: 1059.26 lei
- 20% Preț: 1164.05 lei
- 20% Preț: 1166.52 lei
- 20% Preț: 1459.38 lei
- 18% Preț: 1005.74 lei
- 20% Preț: 997.38 lei
- 20% Preț: 1055.94 lei
- 20% Preț: 1284.47 lei
- 20% Preț: 994.08 lei
- 20% Preț: 1048.72 lei
- 20% Preț: 1066.02 lei
- 20% Preț: 943.78 lei
- 20% Preț: 1173.10 lei
- 20% Preț: 1457.72 lei
Preț: 644.33 lei
Preț vechi: 805.41 lei
-20% Nou
Puncte Express: 966
Preț estimativ în valută:
123.31€ • 127.21$ • 104.36£
123.31€ • 127.21$ • 104.36£
Carte tipărită la comandă
Livrare economică 05-19 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642100710
ISBN-10: 3642100716
Pagini: 272
Ilustrații: XVIII, 252 p.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.39 kg
Ediția:Softcover reprint of hardcover 1st ed. 2009
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Studies in Computational Intelligence
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642100716
Pagini: 272
Ilustrații: XVIII, 252 p.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.39 kg
Ediția:Softcover reprint of hardcover 1st ed. 2009
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Studies in Computational Intelligence
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Metaheuristic Pattern Clustering – An Overview.- Differential Evolution Algorithm: Foundations and Perspectives.- Modeling and Analysis of the Population-Dynamics of Differential Evolution Algorithm.- Automatic Hard Clustering Using Improved Differential Evolution Algorithm.- Fuzzy Clustering in the Kernel-Induced Feature Space Using Differential Evolution Algorithm.- Clustering Using Multi-objective Differential Evolution Algorithms.- Conclusions and Future Research.
Recenzii
From the reviews:
“In this volume, the performance of DE is illustrated, when applied to both single and multi-objective clustering problems, where the number of clusters is not known beforehand and must be determined on the run. … The reader is carefully navigated through the efficacies of clustering, evolutionary optimization and a hybridization of the both.” (T. Postelnicu, Zentralblatt MATH, Vol. 1221, 2011)
“In this volume, the performance of DE is illustrated, when applied to both single and multi-objective clustering problems, where the number of clusters is not known beforehand and must be determined on the run. … The reader is carefully navigated through the efficacies of clustering, evolutionary optimization and a hybridization of the both.” (T. Postelnicu, Zentralblatt MATH, Vol. 1221, 2011)
Textul de pe ultima copertă
Cluster analysis means the organization of an unlabeled collection of objects or patterns into separate groups based on their similarity. The task of computerized data clustering has been approached from diverse domains of knowledge like graph theory, multivariate analysis, neural networks, fuzzy set theory, and so on. Clustering is often described as an unsupervised learning method but most of the traditional algorithms require a prior specification of the number of clusters in the data for guiding the partitioning process, thus making it not completely unsupervised. Modern data mining tools that predict future trends and behaviors for allowing businesses to make proactive and knowledge-driven decisions, demand fast and fully automatic clustering of very large datasets with minimal or no user intervention.
In this Volume, we formulate clustering as an optimization problem, where the best partitioning of a given dataset is achieved by minimizing/maximizing one (single-objective clustering) or more (multi-objective clustering) objective functions. Using several real world applications, we illustrate the performance of several metaheuristics, particularly the Differential Evolution algorithm when applied to both single and multi-objective clustering problems, where the number of clusters is not known beforehand and must be determined on the run. This volume comprises of 7 chapters including an introductory chapter giving the fundamental definitions and the last Chapter provides some important research challenges.
Academics, scientists as well as engineers engaged in research, development and application of optimization techniques and data mining will find the comprehensive coverage of this book invaluable.
In this Volume, we formulate clustering as an optimization problem, where the best partitioning of a given dataset is achieved by minimizing/maximizing one (single-objective clustering) or more (multi-objective clustering) objective functions. Using several real world applications, we illustrate the performance of several metaheuristics, particularly the Differential Evolution algorithm when applied to both single and multi-objective clustering problems, where the number of clusters is not known beforehand and must be determined on the run. This volume comprises of 7 chapters including an introductory chapter giving the fundamental definitions and the last Chapter provides some important research challenges.
Academics, scientists as well as engineers engaged in research, development and application of optimization techniques and data mining will find the comprehensive coverage of this book invaluable.
Caracteristici
Latest research on metaheuristic clustering