Microlocal Analysis and Nonlinear Waves: The IMA Volumes in Mathematics and its Applications, cartea 30
Editat de Michael Beals, Richard B. Melrose, Jeffrey Rauchen Limba Engleză Paperback – 21 dec 2011
Din seria The IMA Volumes in Mathematics and its Applications
- 18% Preț: 946.55 lei
- 15% Preț: 639.73 lei
- 15% Preț: 656.58 lei
- 15% Preț: 642.03 lei
- 15% Preț: 645.28 lei
- Preț: 392.21 lei
- 15% Preț: 642.83 lei
- 15% Preț: 651.67 lei
- 15% Preț: 651.19 lei
- Preț: 385.84 lei
- 15% Preț: 639.41 lei
- 15% Preț: 643.34 lei
- 15% Preț: 667.38 lei
- Preț: 388.34 lei
- Preț: 388.52 lei
- 20% Preț: 333.40 lei
- 15% Preț: 644.95 lei
- Preț: 382.75 lei
- Preț: 380.63 lei
- Preț: 398.53 lei
- 5% Preț: 1416.81 lei
- Preț: 382.36 lei
- Preț: 380.25 lei
- Preț: 399.67 lei
- 15% Preț: 643.65 lei
- Preț: 389.49 lei
- 18% Preț: 944.19 lei
- 20% Preț: 344.42 lei
- 18% Preț: 948.92 lei
- 5% Preț: 1419.39 lei
- 18% Preț: 945.30 lei
Preț: 636.45 lei
Preț vechi: 748.76 lei
-15% Nou
Puncte Express: 955
Preț estimativ în valută:
121.81€ • 126.68$ • 101.93£
121.81€ • 126.68$ • 101.93£
Carte tipărită la comandă
Livrare economică 15-29 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461391388
ISBN-10: 1461391385
Pagini: 216
Ilustrații: XIII, 199 p.
Dimensiuni: 155 x 235 x 11 mm
Greutate: 0.31 kg
Ediția:Softcover reprint of the original 1st ed. 1991
Editura: Springer
Colecția Springer
Seria The IMA Volumes in Mathematics and its Applications
Locul publicării:New York, NY, United States
ISBN-10: 1461391385
Pagini: 216
Ilustrații: XIII, 199 p.
Dimensiuni: 155 x 235 x 11 mm
Greutate: 0.31 kg
Ediția:Softcover reprint of the original 1st ed. 1991
Editura: Springer
Colecția Springer
Seria The IMA Volumes in Mathematics and its Applications
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
On the interaction of conormal waves for semilinear wave equations.- Regularity of nonlinear waves associated with a cusp.- Evolution of a punctual singularity in an Eulerian flow.- Water waves, Hamiltonian systems and Cauchy integrals.- Infinite gain of regularity for dispersive evolution equations.- On the fully non-linear Cauchy problem with small data. II.- Interacting weakly nonlinear hyperbolic and dispersive waves.- Nonlinear resonance can create dense oscillations.- Lower bounds of the life-span of small classical solutions for nonlinear wave equations.- Propagation of stronger singularities of solutions to semilinear wave equations.- Conormality, cusps and non-linear interaction.- Quasimodes for the Laplace operator and glancing hypersurfaces.- A decay estimate for the three-dimensional inhomogeneous Klein-Gordon equation and global existence for nonlinear equations.- Interaction of singularities and propagation into shadow regions in semilinear boundary problems.