Minimum Error Entropy Classification: Studies in Computational Intelligence, cartea 420
Autor Joaquim P. Marques de Sá, Luís M. A. Silva, Jorge M.F. Santos, Luís A. Alexandreen Limba Engleză Paperback – 9 aug 2014
Researchers and practitioners also find in the book a detailed presentation of practical data classifiers using MEE. These include multi‐layer perceptrons, recurrent neural networks, complexvalued neural networks, modular neural networks, and decision trees. A clustering algorithm using a MEE‐like concept is also presented. Examples, tests, evaluation experiments and comparison with similar machines using classic approaches, complement the descriptions.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 631.62 lei 43-57 zile | |
Springer Berlin, Heidelberg – 9 aug 2014 | 631.62 lei 43-57 zile | |
Hardback (1) | 636.14 lei 43-57 zile | |
Springer Berlin, Heidelberg – 25 iul 2012 | 636.14 lei 43-57 zile |
Din seria Studies in Computational Intelligence
- 50% Preț: 264.48 lei
- 70% Preț: 235.75 lei
- 20% Preț: 1134.78 lei
- 20% Preț: 966.66 lei
- 20% Preț: 1423.29 lei
- 20% Preț: 168.78 lei
- 18% Preț: 1089.74 lei
- 20% Preț: 565.38 lei
- 20% Preț: 636.14 lei
- 20% Preț: 1026.49 lei
- 20% Preț: 1546.90 lei
- 20% Preț: 630.47 lei
- 20% Preț: 644.20 lei
- 20% Preț: 973.14 lei
- 20% Preț: 970.73 lei
- 20% Preț: 969.90 lei
- 20% Preț: 1142.04 lei
- 20% Preț: 1415.20 lei
- 20% Preț: 1020.82 lei
- 20% Preț: 1026.49 lei
- 20% Preț: 1024.85 lei
- 18% Preț: 2449.69 lei
- 20% Preț: 969.09 lei
- 20% Preț: 1142.04 lei
- 20% Preț: 1140.44 lei
- 20% Preț: 1021.64 lei
- 20% Preț: 1430.55 lei
- 18% Preț: 1375.05 lei
- 18% Preț: 1102.11 lei
- 20% Preț: 1018.40 lei
- 20% Preț: 987.68 lei
- 20% Preț: 1024.07 lei
- 20% Preț: 1249.53 lei
- 20% Preț: 1019.22 lei
- 20% Preț: 968.30 lei
- 20% Preț: 1146.08 lei
- 20% Preț: 1138.80 lei
- 20% Preț: 1037.78 lei
- 20% Preț: 1140.44 lei
- 20% Preț: 1142.87 lei
- 20% Preț: 1429.76 lei
- 18% Preț: 985.35 lei
- 20% Preț: 977.17 lei
- 20% Preț: 1034.54 lei
- 20% Preț: 1258.40 lei
- 20% Preț: 974.89 lei
- 20% Preț: 1027.45 lei
- 20% Preț: 924.65 lei
- 20% Preț: 1149.31 lei
- 20% Preț: 1428.13 lei
Preț: 631.62 lei
Preț vechi: 789.53 lei
-20% Nou
Puncte Express: 947
Preț estimativ în valută:
120.88€ • 125.56$ • 100.41£
120.88€ • 125.56$ • 100.41£
Carte tipărită la comandă
Livrare economică 03-17 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642437427
ISBN-10: 3642437427
Pagini: 280
Ilustrații: XVIII, 262 p.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.4 kg
Ediția:2013
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Studies in Computational Intelligence
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642437427
Pagini: 280
Ilustrații: XVIII, 262 p.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.4 kg
Ediția:2013
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Studies in Computational Intelligence
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Introduction.- Continuous Risk Functionals.- MEE with Continuous Errors.- MEE with Discrete Errors.- EE-Inspired Risks.- Applications.
Recenzii
From the reviews:
“The paper deals with the theoretical background and corresponding applications of minimum error entropy (MEE) to different data classifications models … . Many examples and tests are also provided to illustrate the practical application of MEE in concrete classification problems. The book is dedicated to researchers and practitioners working on machine learning algorithms interested in using MEE in data classification.” (Florin Gorunescu, zbMATH, Vol. 1280, 2014)
“The paper deals with the theoretical background and corresponding applications of minimum error entropy (MEE) to different data classifications models … . Many examples and tests are also provided to illustrate the practical application of MEE in concrete classification problems. The book is dedicated to researchers and practitioners working on machine learning algorithms interested in using MEE in data classification.” (Florin Gorunescu, zbMATH, Vol. 1280, 2014)
Textul de pe ultima copertă
This book explains the minimum error entropy (MEE) concept applied to data classification machines. Theoretical results on the inner workings of the MEE concept, in its application to solving a variety of classification problems, are presented in the wider realm of risk functionals.
Researchers and practitioners also find in the book a detailed presentation of practical data classifiers using MEE. These include multi‐layer perceptrons, recurrent neural networks, complexvalued neural networks, modular neural networks, and decision trees. A clustering algorithm using a MEE‐like concept is also presented. Examples, tests, evaluation experiments and comparison with similar machines using classic approaches, complement the descriptions.
Researchers and practitioners also find in the book a detailed presentation of practical data classifiers using MEE. These include multi‐layer perceptrons, recurrent neural networks, complexvalued neural networks, modular neural networks, and decision trees. A clustering algorithm using a MEE‐like concept is also presented. Examples, tests, evaluation experiments and comparison with similar machines using classic approaches, complement the descriptions.
Caracteristici
Presents data classification methodologies based on a minimum error entropy approach Includes both theoretical results and applications to real world datasets Written by leading experts in the field