Cantitate/Preț
Produs

Models of Neural Networks III: Association, Generalization, and Representation: Physics of Neural Networks

Editat de Eytan Domany, J. Leo van Hemmen, Klaus Schulten
en Limba Engleză Hardback – dec 1995
One of the most challenging and fascinating problems of the theory of neural nets is that of asymptotic behavior, of how a system behaves as time proceeds. This is of particular relevance to many practical applications. Here we focus on association, generalization, and representation. We turn to the last topic first. The introductory chapter, "Global Analysis of Recurrent Neural Net­ works," by Andreas Herz presents an in-depth analysis of how to construct a Lyapunov function for various types of dynamics and neural coding. It includes a review of the recent work with John Hopfield on integrate-and­ fire neurons with local interactions. The chapter, "Receptive Fields and Maps in the Visual Cortex: Models of Ocular Dominance and Orientation Columns" by Ken Miller, explains how the primary visual cortex may asymptotically gain its specific structure through a self-organization process based on Hebbian learning. His argu­ ment since has been shown to be rather susceptible to generalization.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 64185 lei  6-8 săpt.
  Springer – 28 sep 2012 64185 lei  6-8 săpt.
Hardback (1) 64824 lei  6-8 săpt.
  Springer – dec 1995 64824 lei  6-8 săpt.

Din seria Physics of Neural Networks

Preț: 64824 lei

Preț vechi: 76264 lei
-15% Nou

Puncte Express: 972

Preț estimativ în valută:
12406 12918$ 10485£

Carte tipărită la comandă

Livrare economică 10-24 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780387943688
ISBN-10: 0387943684
Pagini: 311
Ilustrații: XIII, 311 p.
Dimensiuni: 155 x 235 x 19 mm
Greutate: 0.64 kg
Ediția:1996
Editura: Springer
Colecția Springer
Seria Physics of Neural Networks

Locul publicării:New York, NY, United States

Public țintă

Professional/practitioner

Cuprins

1. Global Analysis of Recurrent Neural Networks.- 1.1 Global Analysis-Why?.- 1.2 A Framework for Neural Dynamics.- 1.3 Fixed Points.- 1.4 Periodic Limit Cycles and Beyond.- 1.5 Synchronization of Action Potentials.- 1.6 Conclusions.- References.- 2. Receptive Fields and Maps in the Visual Cortex: Models of Ocular Dominance and Orientation Columns.- 2.1 Introduction.- 2.2 Correlation-Based Models.- 2.3 The Problem of Map Structure.- 2.4 The Computational Significance of Correlatin-Based Rules.- 2.5 Open Questions.- References.- 3. Associative Data Storage and Retrieval in Neural Networks.- 3.1 Introduction and Overview.- 3.1.1 Memory and Representation.- 3.2 Neural Associatve Memory Models.- 3.3 Analysis of the Retrieval Process.- 3.4 Information Theory of the Memory Process.- 3.5 Model Performance.- 3.6 Discussion.- Appendix 3.1.- Appendix 3.2.- References.- 4. Inferences Modeled with Neural Networks.- 4.1 Introduction.- 4.2 Model for Cognitive Systems and for Experiences.- 4.3 Inductive Inference.- 4.4 External Memory.- 4.5 Limited Use of External Memory.- 4.6 Deductive Inference.- 4.7 Conclusion.- References.- 5. Statistical Mechanics of Generalization.- 5.1 Introduction.- 5.2 General Results.- 5.3 The Perceptron.- 5.4 Geometry in Phase Space and Asymptotic Scaling.- 5.5 Applications to Perceptrons.- 5.6 Summary and Outlook.- Appendix 5.1: Proof of Sauer’s Lemma.- Appendix 5.2: Order Parameters for ADALINE.- References.- 6. Bayesian Methods for Backpropagation Networks.- 6.1 Probability Theory and Occam’s Razor.- 6.2 Neural Networks as Probabilistic Models.- 6.3 Setting Regularization Constants ? and ?.- 6.4 Model Comparison.- 6.5 Error Bars and Predictions.- 6.6 Pruning.- 6.7 Automatic Relevance Determination.- 6.8 Implicit Priors.- 6.9 Cheap and CheerfulImplementations.- 6.10 Discussion.- References.- 7. Penacée: A Neural Net System for Recognizing On-Line Handwriting.- 7.1 Introduction.- 7.2 Description of the Building Blocks.- 7.3 Applications.- 7.4 Conclusion.- References.- 8. Topology Representing Network in Robotics.- 8.1 Introduction.- 8.2 Problem Description.- 8.3 Topology Representing Network Algorithm.- 8.4 Experimental Results and Discussion.- References.