Motivated Reinforcement Learning: Curious Characters for Multiuser Games
Autor Kathryn E. Merrick, Mary Lou Maheren Limba Engleză Paperback – 19 oct 2010
This book covers the design, application and evaluation of computational models of motivation in reinforcement learning. The authors start with overviews of motivation and reinforcement learning, then describe models for motivated reinforcement learning. The performance of these models is demonstrated by applications in simulated game scenarios and a live, open-ended virtual world.
Researchers in artificial intelligence, machine learning and artificial life will benefit from this book, as will practitioners working on complex, dynamic systems – in particular multiuser, online games.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 628.88 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 19 oct 2010 | 628.88 lei 6-8 săpt. | |
Hardback (1) | 635.32 lei 3-5 săpt. | |
Springer Berlin, Heidelberg – 27 mai 2009 | 635.32 lei 3-5 săpt. |
Preț: 628.88 lei
Preț vechi: 786.09 lei
-20% Nou
Puncte Express: 943
Preț estimativ în valută:
120.37€ • 126.28$ • 99.85£
120.37€ • 126.28$ • 99.85£
Carte tipărită la comandă
Livrare economică 29 ianuarie-12 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642100352
ISBN-10: 364210035X
Pagini: 220
Ilustrații: XIV, 206 p. 118 illus., 32 illus. in color.
Dimensiuni: 155 x 235 x 12 mm
Greutate: 0.32 kg
Ediția:Softcover reprint of hardcover 1st ed. 2009
Editura: Springer Berlin, Heidelberg
Colecția Springer
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 364210035X
Pagini: 220
Ilustrații: XIV, 206 p. 118 illus., 32 illus. in color.
Dimensiuni: 155 x 235 x 12 mm
Greutate: 0.32 kg
Ediția:Softcover reprint of hardcover 1st ed. 2009
Editura: Springer Berlin, Heidelberg
Colecția Springer
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Non-Player Characters and Reinforcement Learning.- Non-Player Characters in Multiuser Games.- Motivation in Natural and Artificial Agents.- Towards Motivated Reinforcement Learning.- Comparing the Behaviour of Learning Agents.- Developing Curious Characters Using Motivated Reinforcement Learning.- Curiosity, Motivation and Attention Focus.- Motivated Reinforcement Learning Agents.- Curious Characters in Games.- Curious Characters for Multiuser Games.- Curious Characters for Games in Complex, Dynamic Environments.- Curious Characters for Games in Second Life.- Future.- Towards the Future.
Caracteristici
Motivated reinforcement learning agents are applied as a novel approach to designing dynamic, adaptive characters for multiuser, online games Includes supplementary material: sn.pub/extras