Natural Language Processing and Chinese Computing: 10th CCF International Conference, NLPCC 2021, Qingdao, China, October 13–17, 2021, Proceedings, Part II: Lecture Notes in Computer Science, cartea 13029
Editat de Lu Wang, Yansong Feng, Yu Hong, Ruifang Heen Limba Engleză Paperback – 10 oct 2021
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (2) | 606.86 lei 6-8 săpt. | |
Springer International Publishing – 10 oct 2021 | 606.86 lei 6-8 săpt. | |
Springer International Publishing – 12 oct 2021 | 731.10 lei 6-8 săpt. |
Din seria Lecture Notes in Computer Science
- 20% Preț: 1061.55 lei
- 20% Preț: 340.32 lei
- 20% Preț: 341.95 lei
- 20% Preț: 453.32 lei
- 20% Preț: 238.01 lei
- 20% Preț: 340.32 lei
- 20% Preț: 438.69 lei
- Preț: 449.57 lei
- 20% Preț: 343.62 lei
- 20% Preț: 148.66 lei
- 20% Preț: 310.26 lei
- 20% Preț: 256.27 lei
- 20% Preț: 645.28 lei
- 17% Preț: 427.22 lei
- 20% Preț: 655.02 lei
- 20% Preț: 307.71 lei
- 20% Preț: 1075.26 lei
- 20% Preț: 591.51 lei
- Preț: 381.21 lei
- 20% Preț: 337.00 lei
- 15% Preț: 438.59 lei
- 20% Preț: 607.39 lei
- 20% Preț: 538.29 lei
- Preț: 389.48 lei
- 20% Preț: 326.98 lei
- 20% Preț: 1414.79 lei
- 20% Preț: 1024.44 lei
- 20% Preț: 579.30 lei
- 20% Preț: 575.48 lei
- 20% Preț: 583.40 lei
- 20% Preț: 763.23 lei
- 15% Preț: 580.46 lei
- 17% Preț: 360.19 lei
- 20% Preț: 504.57 lei
- 20% Preț: 172.69 lei
- 20% Preț: 369.12 lei
- 20% Preț: 353.50 lei
- 20% Preț: 585.88 lei
- Preț: 410.88 lei
- 20% Preț: 596.46 lei
- 20% Preț: 763.23 lei
- 20% Preț: 825.93 lei
- 20% Preț: 649.49 lei
- 20% Preț: 350.21 lei
- 20% Preț: 309.90 lei
- 20% Preț: 122.89 lei
Preț: 606.86 lei
Preț vechi: 758.57 lei
-20% Nou
Puncte Express: 910
Preț estimativ în valută:
116.14€ • 120.93$ • 98.15£
116.14€ • 120.93$ • 98.15£
Carte tipărită la comandă
Livrare economică 11-25 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030884826
ISBN-10: 3030884821
Pagini: 630
Ilustrații: XXXVI, 630 p. 330 illus., 146 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.92 kg
Ediția:1st ed. 2021
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Cham, Switzerland
ISBN-10: 3030884821
Pagini: 630
Ilustrații: XXXVI, 630 p. 330 illus., 146 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.92 kg
Ediția:1st ed. 2021
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Cham, Switzerland
Cuprins
Posters - Fundamentals of NLP.- Syntax and Coherence - The Effect on Automatic Argument Quality Assessment.- ExperienceGen 1.0: A Text Generation Challenge Which Requires Deduction and Induction Ability.- Machine Translation and Multilinguality.- SynXLM-R: Syntax-enhanced XLM-R in Translation Quality Estimation.- Machine Learning for NLP.- Memetic Federated Learning for Biomedical Natural Language Processing.- Information Extraction and Knowledge Graph.- Event Argument Extraction via a Distance-Sensitive Graph Convolutional Network.- Exploit Vague Relation: An Augmented Temporal Relation Corpus and Evaluation.- Searching Effective Transformer for Seq2Seq Keyphrase Generation.- Prerequisite Learning with Pre-trained Language and Graph Embedding Models.- Summarization and Generation.- Variational Autoencoder with Interactive Attention for Affective Text Generation.- CUSTOM: Aspect-Oriented Product Summarization for E-Commerce.- Question Answering.-FABERT: A Feature Aggregation BERT-Based Model for Document Reranking.- Generating Relevant, Correct and Fluent Answers in Natural Answer Generation.- GeoCQA: A Large-scale Geography-Domain Chinese Question Answering Dataset from Examination.- Dialogue Systems.- Generating Informative Dialogue Responses with Keywords-Guided Networks.- Zero-Shot Deployment for Cross-Lingual Dialogue System.- MultiWOZ 2.3: A multi-domain task-oriented dialogue dataset enhanced with annotation corrections and co-reference annotation.- EmoDialoGPT: Enhancing DialoGPT with Emotion.- Social Media and Sentiment Analysis.- BERT-based Meta-learning Approach with Looking Back for Sentiment Analysis of Literary Book Reviews.- ISWR: an Implicit Sentiment Words Recognition Model Based on Sentiment Propagation.- An Aspect-Centralized Graph Convolutional Network for Aspect-based Sentiment Classification.- NLP Applications and Text Mining.- Capturing Global Informativeness in Open Domain Keyphrase Extraction.- Background Semantic Information Improves VerbalMetaphor Identification.- Multimodality and Explainability.- Towards unifying the explainability evaluation methods for NLP.- Explainable AI Workshop.- Detecting Covariate Drift with Explanations.- A Data-Centric Approach Towards Deducing Bias in Artificial Intelligence Systems for Textual Contexts.- Student Workshop.- Enhancing Model Robustness via Lexical Distilling.- Multi-stage Multi-modal Pre-training for Video Representation.- Nested Causality Extraction on Traffic Accident Texts as Question Answering.- Evaluation Workshop.- MSDF: A General Open-Domain Multi-Skill Dialog Framework.- RoKGDS: A Robust Knowledge Grounded Dialog System.- Enhanced Few-shot Learning with Multiple-Pattern-Exploiting Training.- BIT-Event at NLPCC-2021 Task 3: Subevent Identification via Adversarial Training.- Few-shot Learning for Chinese NLP tasks.- When Few-shot Learning Meets Large-scale Knowledge-enhanced Pre-training: Alibaba at FewCLUE.- TKB²ert: Two-stage Knowledge Infused Behavioral Fine-tuned BERT.- A Unified Information Extraction System Based on Role Recognition and Combination.- A Simple but Effective System for Multi-format Information Extraction.- A Hierarchical Sequence Labeling Model for Argument Pair Extraction.- Distant finetuning with discourse relations for stance classification.- The Solution of Xiaomi AI Lab to the 2021 Language and Intelligence Challenge: Multi-Format Information Extraction Task.- A Unified Platform for Information Extraction with Two-stage Process.- Overview of the NLPCC 2021 Shared Task: AutoIE2.- Task 1 - Argumentative Text Understanding for AI Debater (AIDebater).- Two Stage Learning for Argument Pairs Extraction.- Overview of Argumentative Text Understanding for AI Debater Challenge.- ACE: A Context-Enhanced model for Interactive Argument Pair Identification.- Context-Aware and Data-Augmented Transformer for Interactive Argument Pair Identification.- ARGUABLY @ AI Debater-NLPCC 2021 Task 3: Argument Pair Extraction from Peer Review and Rebuttals.- Sentence Rewriting for Fine-Tuned Model Based on Dictionary: Taking the Track 1 of NLPCC 2021 Argumentative Text Understanding for AI Debater as an Example.- Knowledge Enhanced transformers System for Claim Stance Classification.