Cantitate/Preț
Produs

Natural Operations in Differential Geometry

Autor Ivan Kolar, Peter W. Michor, Jan Slovak
en Limba Engleză Hardback – 4 feb 1993
The aim of this work is threefold: First it should be a monographical work on natural bundles and natural op­ erators in differential geometry. This is a field which every differential geometer has met several times, but which is not treated in detail in one place. Let us explain a little, what we mean by naturality. Exterior derivative commutes with the pullback of differential forms. In the background of this statement are the following general concepts. The vector bundle A kT* M is in fact the value of a functor, which associates a bundle over M to each manifold M and a vector bundle homomorphism over f to each local diffeomorphism f between manifolds of the same dimension. This is a simple example of the concept of a natural bundle. The fact that exterior derivative d transforms sections of A kT* M into sections of A k+1T* M for every manifold M can be expressed by saying that d is an operator from A kT* M into A k+1T* M.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 72080 lei  6-8 săpt.
  Springer Berlin, Heidelberg – dec 2010 72080 lei  6-8 săpt.
Hardback (1) 75775 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 4 feb 1993 75775 lei  6-8 săpt.

Preț: 75775 lei

Preț vechi: 92408 lei
-18% Nou

Puncte Express: 1137

Preț estimativ în valută:
14525 15245$ 11980£

Carte tipărită la comandă

Livrare economică 23 ianuarie-06 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540562351
ISBN-10: 3540562354
Pagini: 444
Ilustrații: VI, 434 p.
Dimensiuni: 156 x 234 x 29 mm
Greutate: 1.76 kg
Ediția:1993
Editura: Springer Berlin, Heidelberg
Colecția Springer
Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Professional/practitioner

Cuprins

I. Manifolds and Lie Groups.- II. Differential Forms.- III. Bundles and Connections.- IV. Jets and Natural Bundles.- V. Finite Order Theorems.- VI. Methods for Finding Natural Operators.- VII. Further Applications.- VIII. Product Preserving Functors.- IX. Bundle Functors on Manifolds.- X. Prolongation of Vector Fields and Connections.- XI. General Theory of Lie Derivatives.- XII. Gauge Natural Bundles and Operators.- References.- List of symbols.- Author index.