Neural Control of Renewable Electrical Power Systems: Studies in Systems, Decision and Control, cartea 278
Autor Edgar N. Sánchez, Larbi Djilalien Limba Engleză Paperback – 11 mai 2021
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 632.58 lei 6-8 săpt. | |
Springer International Publishing – 11 mai 2021 | 632.58 lei 6-8 săpt. | |
Hardback (1) | 632.64 lei 6-8 săpt. | |
Springer International Publishing – 10 mai 2020 | 632.64 lei 6-8 săpt. |
Din seria Studies in Systems, Decision and Control
- 18% Preț: 930.97 lei
- 18% Preț: 717.24 lei
- 20% Preț: 627.40 lei
- 15% Preț: 639.42 lei
- 18% Preț: 894.17 lei
- 18% Preț: 940.38 lei
- 20% Preț: 1443.12 lei
- 18% Preț: 1005.39 lei
- 15% Preț: 648.52 lei
- 20% Preț: 835.23 lei
- 18% Preț: 1104.09 lei
- 20% Preț: 934.24 lei
- 24% Preț: 726.59 lei
- 18% Preț: 997.40 lei
- 20% Preț: 924.72 lei
- 18% Preț: 1003.03 lei
- 20% Preț: 916.48 lei
- 18% Preț: 999.93 lei
- 18% Preț: 746.89 lei
- 18% Preț: 992.88 lei
- 18% Preț: 992.09 lei
- 18% Preț: 1009.31 lei
- 18% Preț: 942.72 lei
- 18% Preț: 1100.48 lei
- 18% Preț: 1401.75 lei
- 20% Preț: 1154.61 lei
- 18% Preț: 1108.01 lei
- 18% Preț: 770.00 lei
- 18% Preț: 945.06 lei
- 20% Preț: 1447.66 lei
- 18% Preț: 1382.18 lei
- 20% Preț: 1171.80 lei
- 18% Preț: 1556.09 lei
- 20% Preț: 976.93 lei
- 20% Preț: 367.15 lei
- 20% Preț: 1271.70 lei
- 18% Preț: 1570.97 lei
- 18% Preț: 1104.09 lei
- 20% Preț: 1048.16 lei
- 18% Preț: 1382.14 lei
- 18% Preț: 945.33 lei
- 20% Preț: 1035.68 lei
- 20% Preț: 1041.62 lei
- 18% Preț: 998.33 lei
- 18% Preț: 1216.88 lei
- 18% Preț: 1211.46 lei
- 18% Preț: 941.77 lei
- 18% Preț: 883.98 lei
Preț: 632.58 lei
Preț vechi: 744.22 lei
-15% Nou
Puncte Express: 949
Preț estimativ în valută:
121.10€ • 124.54$ • 100.46£
121.10€ • 124.54$ • 100.46£
Carte tipărită la comandă
Livrare economică 18 februarie-04 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030474454
ISBN-10: 3030474453
Ilustrații: XXV, 206 p. 218 illus., 208 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.33 kg
Ediția:1st ed. 2020
Editura: Springer International Publishing
Colecția Springer
Seria Studies in Systems, Decision and Control
Locul publicării:Cham, Switzerland
ISBN-10: 3030474453
Ilustrații: XXV, 206 p. 218 illus., 208 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.33 kg
Ediția:1st ed. 2020
Editura: Springer International Publishing
Colecția Springer
Seria Studies in Systems, Decision and Control
Locul publicării:Cham, Switzerland
Cuprins
Introduction.- Mathematical Preliminaries.- Wind System Modeling.- Neural Control Synthesis.- Experimental Results.- Microgrid Control.- Conclusions and Future Work.
Recenzii
“The book addresses graduate students and researchers in advanced control engineering, applied mathematics, mathematical systems theory and wind power technologies.” (Vladimir Sobolev, zbMATH 1482.93003, 2022)
Textul de pe ultima copertă
This book presents advanced control techniques that use neural networks to deal with grid disturbances in the context renewable energy sources, and to enhance low-voltage ride-through capacity, which is a vital in terms of ensuring that the integration of distributed energy resources into the electrical power network. It presents modern control algorithms based on neural identification for different renewable energy sources, such as wind power, which uses doubly-fed induction generators, solar power, and battery banks for storage. It then discusses the use of the proposed controllers to track doubly-fed induction generator dynamics references: DC voltage, grid power factor, and stator active and reactive power, and the use of simulations to validate their performance. Further, it addresses methods of testing low-voltage ride-through capacity enhancement in the presence of grid disturbances, as well as the experimental validation of the controllers under both normal and abnormal grid conditions. The book then describes how the proposed control schemes are extended to control a grid-connected microgrid, and the use of an IEEE 9-bus system to evaluate their performance and response in the presence of grid disturbances. Lastly, it examines the real-time simulation of the entire system under normal and abnormal conditions using an Opal-RT simulator.
Caracteristici
Presents recent research on neural control of renewable electrical power systems Describes robust control schemes based on neural network identification Intended for researchers and students with a control background wishing to expand their knowledge of wind power generation and distributed energy resources installed into a grid-connected microgrid