Neural Network Control of Nonlinear Discrete-Time Systems: Automation and Control Engineering
Autor Jagannathan Sarangapanien Limba Engleză Hardback – 24 apr 2006
Borrowing from Biology
Examining neurocontroller design in discrete-time for the first time, Neural Network Control of Nonlinear Discrete-Time Systems presents powerful modern control techniques based on the parallelism and adaptive capabilities of biological nervous systems. At every step, the author derives rigorous stability proofs and presents simulation examples to demonstrate the concepts.
Progressive Development
After an introduction to neural networks, dynamical systems, control of nonlinear systems, and feedback linearization, the book builds systematically from actuator nonlinearities and strict feedback in nonlinear systems to nonstrict feedback, system identification, model reference adaptive control, and novel optimal control using the Hamilton-Jacobi-Bellman formulation. The author concludes by developing a framework for implementing intelligent control in actual industrial systems using embedded hardware.
Neural Network Control of Nonlinear Discrete-Time Systems fosters an understanding of neural network controllers and explains how to build them using detailed derivations, stability analysis, and computer simulations.
Din seria Automation and Control Engineering
- Preț: 386.01 lei
- 20% Preț: 719.06 lei
- Preț: 317.46 lei
- 31% Preț: 433.47 lei
- 18% Preț: 1330.48 lei
- 18% Preț: 1145.95 lei
- 15% Preț: 542.20 lei
- Preț: 422.59 lei
- 26% Preț: 1577.16 lei
- 15% Preț: 489.26 lei
- 20% Preț: 618.36 lei
- 8% Preț: 438.77 lei
- 18% Preț: 1339.62 lei
- 26% Preț: 875.55 lei
- 18% Preț: 1324.63 lei
- 23% Preț: 427.09 lei
- 18% Preț: 1108.37 lei
- 15% Preț: 461.03 lei
- 18% Preț: 1052.89 lei
- 25% Preț: 767.07 lei
- 38% Preț: 331.87 lei
- 38% Preț: 331.87 lei
- 31% Preț: 408.36 lei
- 18% Preț: 1229.15 lei
- 18% Preț: 1125.42 lei
- 23% Preț: 456.63 lei
- 53% Preț: 207.71 lei
- 26% Preț: 931.61 lei
- 18% Preț: 1668.72 lei
- 25% Preț: 1200.38 lei
- 22% Preț: 429.38 lei
- 9% Preț: 593.60 lei
- 26% Preț: 1101.06 lei
- 18% Preț: 1344.36 lei
- 15% Preț: 461.03 lei
- 18% Preț: 784.81 lei
- 18% Preț: 1309.67 lei
- 18% Preț: 1223.61 lei
- 31% Preț: 408.36 lei
Preț: 1197.16 lei
Preț vechi: 1601.66 lei
-25% Nou
Puncte Express: 1796
Preț estimativ în valută:
229.13€ • 236.13$ • 193.45£
229.13€ • 236.13$ • 193.45£
Carte tipărită la comandă
Livrare economică 04-18 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780824726775
ISBN-10: 0824726774
Pagini: 622
Ilustrații: 171 b/w images, 23 tables and 1465 equations
Dimensiuni: 152 x 229 x 38 mm
Greutate: 1.31 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press
Seria Automation and Control Engineering
ISBN-10: 0824726774
Pagini: 622
Ilustrații: 171 b/w images, 23 tables and 1465 equations
Dimensiuni: 152 x 229 x 38 mm
Greutate: 1.31 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press
Seria Automation and Control Engineering
Public țintă
ProfessionalCuprins
Background on Neural Networks. Background and Discrete-Time Adaptive Control. Neural Network Control of Nonlinear Systems and Feedback Linearization. Neural Network Control of Uncertain Nonlinear Discrete-Time Systems with Actuator Nonlinearities. Output Feedback Control of Strict Feedback Nonlinear MIMO Discrete-Time Systems. Neural Network Control of Nonstrict Feedback Nonlinear Systems. System Identification Using Discrete-Time Neural Networks. Discrete-Time Model Reference Adaptive Control. Neural Network Control in Discrete-Time Using Hamilton-Jacobi-Bellman Formulation. Neural Network Output Feedback Controller Design and Embedded Hardware Implementation. Index.
Descriere
Neural Network Control of Nonlinear Discrete-Time Systems presents powerful modern control techniques based on the parallelism and adaptive capabilities of biological nervous systems. After an introduction to neural networks, dynamical systems, control of nonlinear systems, and feedback linearization, the book builds systematically from actuator nonlinearities and strict feedback in nonlinear systems to nonstrict feedback, system identification, model reference adaptive control, and novel optimal control using the Hamilton-Jacobi-Bellman formulation. The author concludes by developing a framework for implementing intelligent control in actual industrial systems using embedded hardware.