Cantitate/Preț
Produs

Subspace Learning of Neural Networks: Automation and Control Engineering

Autor Jian Cheng Lv, Zhang Yi, Jiliu Zhou
en Limba Engleză Paperback – 14 iun 2017
Using real-life examples to illustrate the performance of learning algorithms and instructing readers how to apply them to practical applications, this work offers a comprehensive treatment of subspace learning algorithms for neural networks. The authors summarize a decade of high quality research offering a host of practical applications. They demonstrate ways to extend the use of algorithms to fields such as encryption communication, data mining, computer vision, and signal and image processing to name just a few. The brilliance of the work lies with how it coherently builds a theoretical understanding of the convergence behavior of subspace learning algorithms through a summary of chaotic behaviors.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 33187 lei  6-8 săpt.
  CRC Press – 14 iun 2017 33187 lei  6-8 săpt.
Hardback (1) 73722 lei  6-8 săpt.
  CRC Press – 29 sep 2010 73722 lei  6-8 săpt.

Din seria Automation and Control Engineering

Preț: 33187 lei

Preț vechi: 53750 lei
-38% Nou

Puncte Express: 498

Preț estimativ în valută:
6352 6546$ 5363£

Carte tipărită la comandă

Livrare economică 04-18 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781138112681
ISBN-10: 1138112682
Pagini: 256
Ilustrații: 84
Dimensiuni: 156 x 234 mm
Greutate: 0.45 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press
Seria Automation and Control Engineering


Cuprins

Introduction. PCA Learning Algorithms with Constants Learning Rates. PCA Learning Algorithms with Adaptive Learning Rates. GHA PCA Learning Algorithms. MCA Learning Algorithms. ICA Learning Algorithms. Chaotic Behaviors Arising from Learning Algorithms. Multi-Block-Based MCA for Nonlinear Surface Fitting. A ICA Algorithm for Extracting Fetal Electrocardiogram. Some Applications of PCA Neural Networks. Conclusion.

Notă biografică

Jian Cheng LV and Zhang Yi are affiliated with the Machine Intelligence Lab of the College of Computer Science at Sichuan University. Jiliu Zhou is affiliated with the College of Computer Science at Sichuan University.

Descriere

Using real-life examples to illustrate the performance of learning algorithms and instructing readers how to apply them to practical applications, this work offers a comprehensive treatment of subspace learning algorithms for neural networks. The authors summarize a decade of high quality research offering a host of practical applications. They demonstrate ways to extend the use of algorithms to fields such as encryption communication, data mining, computer vision, and signal and image processing to name just a few. The brilliance of the work lies with how it coherently builds a theoretical understanding of the convergence behavior of subspace learning algorithms through a summary of chaotic behaviors.