Cantitate/Preț
Produs

Nonclassical Light from Semiconductor Lasers and LEDs: Springer Series in Photonics, cartea 5

Autor Jungsang Kim, Seema Somani, Yoshihisa Yamamoto
en Limba Engleză Hardback – 28 aug 2001
The quantum statistical properties of light generated in a semiconductor laser and a light-emitting diode (LED) have been a ?eld of intense research for more than a decade. This research monograph discusses recent research activities in nonclassical light generation based on semiconductor devices, performed mostly at Stanford University. When a semiconductor material is used as the active medium to generate photons, as in semiconductor lasers and LEDs, the ?ow of carriers (electrons andholes)isconvertedintoa?owofphotons. Providedthattheconversionis fast and e?cient, the statistical properties of the carriers (“pump noise”) can be transferred to the photons; if pump noise can be suppressed to below the shot noise value, the noise in the photon output can also be suppressed below thePoissonlimit. Sinceelectronsandholesarefermionsandhavecharges,the statisticalpropertiesoftheseparticlescanbesigni?cantlydi?erentfromthose of photons if the structure of the light-emitting device is properly designed to provide interaction between these particles. There has been a discrepancy between the theoretical understanding and experimental observation of noise in a macroscopic resistor until very - cently. The dissipation that electrons experience in a resistor is expected to accompany the ?uctuation due to partition noise, leading to shot noise in the large dissipation limit as is the case with photons. Experimental observation shows that thermal noise, expected only in a thermal-equilibrium situation (zero-bias condition), is the only source of noise featured by a resistor, - dependent of the current.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 94276 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 5 oct 2012 94276 lei  6-8 săpt.
Hardback (1) 94750 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 28 aug 2001 94750 lei  6-8 săpt.

Din seria Springer Series in Photonics

Preț: 94750 lei

Preț vechi: 115548 lei
-18% Nou

Puncte Express: 1421

Preț estimativ în valută:
18133 18771$ 15326£

Carte tipărită la comandă

Livrare economică 06-20 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540677178
ISBN-10: 3540677178
Pagini: 260
Ilustrații: XIV, 244 p.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.5 kg
Ediția:2001
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Series in Photonics

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

1. Nonclassical Light.- 1.1 Classical Description of Light.- 1.2 Quantum Description of Light.- 1.3 Coherent State, Squeezed State and Number-Phase Squeezed State.- 1.4 Quantum Theory of Photodetection and Sub-Poisson Photon Distribution.- 1.5 Quantum Theory of Second-Order Coherence and Photon Antibunching.- 1.6 Quantum Theory of Photocurrent Fluctuation and Squeezing.- 2. Noise of p-n Junction Light Emitters.- 2.1 Introduction.- 2.2 Junction Voltage Dynamics: the Poisson Equation.- 2.3 Semiclassical Langevin Equation for Junction Voltage Dynamics.- 2.4 Noise Analysis of an LED.- 2.5 Summary.- 3. Sub-Poissonian Light Generation in Light-Emitting Diodes.- 3.1 Introduction.- 3.2 Physical Mechanism of Pump-Noise Suppression.- 3.3 Measurement of the Squeezing Bandwidth.- 3.4 Summary.- 4. Amplitude-Squeezed Light Generation in Semiconductor Lasers.- 4.1 Introduction.- 4.2 Interferometric Measurement of Longitudinal-Mode-Partition Noise.- 4.3 Grating-Feedback External-Cavity Semiconductor Laser.- 4.4 Injection-Locked Semiconductor Laser.- 4.5 Summary.- 5. Excess Intensity Noise of a Semiconductor Laser with Nonlinear Gain and Loss.- 5.1 Introduction.- 5.2 Physical Models for Nonlinearity.- 5.3 Noise Analysis Using Langevin Rate Equations.- 5.4 Numerical Results.- 5.5 Discussion: Effect of Saturable Loss.- 5.6 Comparison of Two Laser Structures with Respect to Saturable Loss.- 5.7 Summary.- 6. Transverse-Junction-Stripe Lasers for Squeezed Light Generation.- 6.1 Introduction.- 6.2 Fabrication.- 6.3 DC Characterization: Threshold, Loss and Quantum Efficiency.- 6.4 Intensity Noise.- 6.5 Summary.- 7. Sub-Shot-Noise FM Spectroscopy.- 7.1 Introduction.- 7.2 Advantages of Semiconductor Lasers.- 7.3 Signal-to-Noise Ratio (SNR).- 7.4 Realization of Sub-Shot-Noise FM Spectroscopy.- 7.5 Experimental Results.- 7.6 Future Prospects.- 8. Sub-Shot-Noise FM Noise Spectroscopy.- 8.1 Introduction.- 8.2 Principle of FM Noise Spectroscopy.- 8.3 Signal-to-Noise Ratio and the Advantage of Amplitude Squeezing.- 8.4 Sub-Shot-Noise Spectroscopy.- 8.5 Phase-Sensitive FM Noise Spectroscopy.- 8.6 Summary.- 9. Sub-Shot-Noise Interferometry.- 9.1 Introduction.- 9.2 Sensitivity Limit of an Optical Interferometer.- 9.3 Amplitude-Squeezed Light Injection in a Dual-Input Mach-Zehnder Interferometer.- 9.4 Sub-Shot-Noise Phase Measurement.- 9.5 Dual-Input Michelson Interferometer.- 9.6 Summary and Future Prospects.- 10. Coulomb Blockade Effect in Mesoscopic p-n Junctions.- 10.1 Introduction.- 10.2 Calculation of Resonant Tunneling Rates.- 10.3 Coulomb Blockade Effect on Resonant Tunneling.- 10.4 Coulomb Staircase.- 10.5 Turnstile Operation.- 10.6 Monte-Carlo Simulations.- 10.7 Summary.- 11. Single-Photon Generation in a Single-Photon Turnstile Device.- 11.1 Introduction.- 11.2 Device Fabrication.- 11.3 Observation of the Coulomb Staircase.- 11.4 Single-Photon Turnstile Device.- 11.5 Summary.- 12. Single-Photon Detection with Visible-Light Photon Counter.- 12.1 Introduction.- 12.2 Comparison of Single-Photon Detectors.- 12.3 Operation Principle of a VLPC.- 12.4 Single-Photon Detection System Based on a VLPC.- 12.5 Quantum Efficiency of a VLPC.- 12.6 Theory of Noise in Avalanche Multiplication.- 12.7 Excess Noise Factor of a VLPC.- 12.8 Two-Photon Detection with a VLPC.- 12.9 Summary.- 13. Future Prospects.- 13.1 Introduction.- 13.2 Regulated and Entangled Photons from a Single Quantum Dot.- 13.3 Single-Mode Spontaneous Emission from a Single Quantum Dot in a Three-Dimensional Microcavity.- 13.4 Lasing and Squeezing of Exciton-Polaritons in a Semiconductor Microcavity.- A. Appendix: Noise and Correlation Spectra for Light-Emitting Diode.- A.1 Linearization.- A.2 LED Photon Noise Spectral Density.- A.3 External Current Noise Spectral Density.- A.4 Junction-Voltage-Carrier-Number Correlation.- A.5 Photon-Flux -Junction-Voltage Correlation.- References.

Textul de pe ultima copertă

The quantum statistical properties of the light wave generated in a semiconductor laser or a light-emitting diode (LED) has been a field of intense research for more than a decade. This research monograph discusses recent research activities in nonclassical light generation based on semiconductor devices. This volume is composed of four major parts. The first discusses the generation of sub-shot-noise light in macroscopic pn junction light-emitting devices, including semiconductor laser and light-emitting diodes. The second part discusses the application of squeezed light in high-precision measurement, including spectroscopy and interferometry. The third part addresses the Coulomb blockade effect in a mesoscopic pn junction and the generation of single photon states. The last part covers the detection of single photons using a visible light photon counter.

Caracteristici

This book is the most advanced state-of-the-art report on nonclassical light generation Includes supplementary material: sn.pub/extras