Noniterative Coordination in Multilevel Systems: Nonconvex Optimization and Its Applications, cartea 34
Autor Todor Stoiloven Limba Engleză Hardback – 31 aug 1999
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 621.74 lei 6-8 săpt. | |
SPRINGER NETHERLANDS – 16 ian 2012 | 621.74 lei 6-8 săpt. | |
Hardback (1) | 627.80 lei 6-8 săpt. | |
SPRINGER NETHERLANDS – 31 aug 1999 | 627.80 lei 6-8 săpt. |
Din seria Nonconvex Optimization and Its Applications
- 18% Preț: 922.46 lei
- 20% Preț: 1244.85 lei
- Preț: 385.50 lei
- 18% Preț: 1187.20 lei
- 18% Preț: 921.55 lei
- 18% Preț: 1772.16 lei
- 18% Preț: 1195.96 lei
- 18% Preț: 927.84 lei
- 18% Preț: 1510.79 lei
- 20% Preț: 968.12 lei
- 18% Preț: 1192.41 lei
- 18% Preț: 3225.52 lei
- 18% Preț: 1187.20 lei
- 15% Preț: 581.20 lei
- 18% Preț: 1188.41 lei
- 24% Preț: 1137.16 lei
- 20% Preț: 966.99 lei
- 18% Preț: 928.88 lei
- 20% Preț: 971.65 lei
- 15% Preț: 627.93 lei
- 18% Preț: 1190.72 lei
- 18% Preț: 923.38 lei
- 18% Preț: 924.93 lei
- 18% Preț: 1187.20 lei
- 18% Preț: 1778.61 lei
- 18% Preț: 1199.47 lei
- 18% Preț: 924.15 lei
Preț: 627.80 lei
Preț vechi: 738.58 lei
-15% Nou
Puncte Express: 942
Preț estimativ în valută:
120.16€ • 125.24$ • 100.03£
120.16€ • 125.24$ • 100.03£
Carte tipărită la comandă
Livrare economică 06-20 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780792358794
ISBN-10: 0792358791
Pagini: 270
Ilustrații: XIV, 270 p.
Dimensiuni: 160 x 240 x 18 mm
Greutate: 0.58 kg
Ediția:1999
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Nonconvex Optimization and Its Applications
Locul publicării:Dordrecht, Netherlands
ISBN-10: 0792358791
Pagini: 270
Ilustrații: XIV, 270 p.
Dimensiuni: 160 x 240 x 18 mm
Greutate: 0.58 kg
Ediția:1999
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Nonconvex Optimization and Its Applications
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
I Hierarchical Systems and Their Management.- 1.1 Hierarchical optimization of a catalytic cracking plant.- 1.2. Hierarchical optimization of a hydro and thermal power plant system.- 1.3. Hierarchical optimization and management of an interconnected dynamical system.- 1.4. Mathematical models in hierarchical multilevel system theory.- 1.5. Two level mathematical programming models.- 1.6. Hierarchical model applications.- 1.7. Mathematical modeling in hierarchical system theory - summary.- II One step Coordination as a Tool for Real Time System Management.- 2.1. Relations between multilevel and multilayer hierarchies.- 2.2. One step coordination “suggestion-correction” protocols - a new noniterative multilevel strategy.- 2.3. General mathematical modeling for noniterative coordination.- III Noniterative Coordination with Linear Quadratic Approximations.- 3.1. Analytical solution of the primal Lagrange problem.- 3.2. Evaluation of the matrix dx/dX.- 3.3. Evaluation of the optimal coordination Xopt.- 3.4. Assessment of the approximations of x(X), H(X).- 3.5. Approximation of the global optimization problem.- 3.6. Analytical solution of the general problem of quadratic programming.- 3.7. Noniterative coordination for block diagonal optimization problems.- 3.8. Analytical solution of the quadratic programming problem in the block diagonal case.- 3.9. Examples of block-diagonal problems.- 3.10. Global optimization problem with inequality constraints.- 3.11. Application of noniterative coordination to the general problem of quadratic programming.- 3.12. Application of noniterative coordination for the optimal management of traffic lights of neighbor junctions.- 3.13. Application of noniterative coordination for optimal wireless data communication.- 3.14. Conclusions.- IVNoniterative Coordination applying Rational Pade Functions.- 4.1. Pade approximation of x(X).- 4.2. Modified optimization problem.- 4.3. Dual Lagrange problem.- 4.4. Dual Lagrange problem with approximation.- 4.5. Application of noniterative coordination for optimal hierarchical control of interconnected systems.- 4.6. Application of noniterative coordination for fast solution of nonlinear optimization problems.- 4.7. Comparison between the SQP, QQ and LQ algorithms on optimization problem for vector X.- 4.7. Conclusions.- Epilogue.- Appendices.- References.