Nonlinear Combinatorial Optimization: Springer Optimization and Its Applications, cartea 147
Editat de Ding-Zhu Du, Panos M. Pardalos, Zhao Zhangen Limba Engleză Hardback – 14 iun 2019
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 576.98 lei 6-8 săpt. | |
Springer International Publishing – 14 aug 2020 | 576.98 lei 6-8 săpt. | |
Hardback (1) | 722.52 lei 6-8 săpt. | |
Springer International Publishing – 14 iun 2019 | 722.52 lei 6-8 săpt. |
Din seria Springer Optimization and Its Applications
- 15% Preț: 631.20 lei
- 15% Preț: 653.42 lei
- 18% Preț: 945.33 lei
- 17% Preț: 360.79 lei
- 13% Preț: 458.08 lei
- Preț: 336.79 lei
- 18% Preț: 774.64 lei
- 17% Preț: 397.79 lei
- 18% Preț: 1114.17 lei
- 15% Preț: 635.55 lei
- 15% Preț: 636.50 lei
- Preț: 393.78 lei
- Preț: 373.51 lei
- Preț: 383.90 lei
- Preț: 388.48 lei
- Preț: 537.09 lei
- 15% Preț: 636.50 lei
- Preț: 383.72 lei
- 15% Preț: 638.91 lei
- 24% Preț: 611.55 lei
- 18% Preț: 956.21 lei
- 20% Preț: 585.91 lei
- 15% Preț: 698.12 lei
- 18% Preț: 730.11 lei
- 15% Preț: 647.16 lei
- 15% Preț: 647.92 lei
- 18% Preț: 732.60 lei
- 15% Preț: 693.45 lei
- 20% Preț: 581.07 lei
Preț: 722.52 lei
Preț vechi: 881.12 lei
-18% Nou
Puncte Express: 1084
Preț estimativ în valută:
138.34€ • 144.05$ • 114.78£
138.34€ • 144.05$ • 114.78£
Carte tipărită la comandă
Livrare economică 13-27 februarie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030161934
ISBN-10: 3030161935
Pagini: 400
Ilustrații: VIII, 315 p. 29 illus., 9 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.65 kg
Ediția:1st ed. 2019
Editura: Springer International Publishing
Colecția Springer
Seria Springer Optimization and Its Applications
Locul publicării:Cham, Switzerland
ISBN-10: 3030161935
Pagini: 400
Ilustrații: VIII, 315 p. 29 illus., 9 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.65 kg
Ediția:1st ed. 2019
Editura: Springer International Publishing
Colecția Springer
Seria Springer Optimization and Its Applications
Locul publicării:Cham, Switzerland
Cuprins
A role of minimum spanning tree.- Discrete Newton method.- An overview of submodular optimization: single- and multi-objectives.- Discrete convex optimization and applications in supply chain management.- Thresholding methods for streaming submodular maximization with a cardinality constraint and its variants.- Nonsubmodular optimization.- On block-structured integer programming and its applications.- Online combinatorial optimization problems with nonlinear objectives.- Solving combinatorial problems with machine learning methods.- Modeling malware propagation dynamics and developing prevention method in wireless sensor networks.- Composed influence in social networks.- Friending.- Optimization on content spread in social network studies.- Interation-aware influence maximization in social networks.- Multi-document extractive summarization as a nonlinear combinatorial optimization- Viral marketing for complementary products.
Recenzii
“Each chapter can be read by its own and does not assume knowledge from one of the other chapters. … All in all, the book ‘Nonlinear combinatorial optimization’ introduces some interesting topics in this relatively new field.” (Isabel Beckenbach, zbMATH 1480.90209, 2022)
Notă biografică
Textul de pe ultima copertă
Graduate students and researchers in applied mathematics, optimization, engineering, computer science, and management science will find this book a useful reference which provides an introduction to applications and fundamental theories in nonlinear combinatorial optimization. Nonlinear combinatorial optimization is a new research area within combinatorial optimization and includes numerous applications to technological developments, such as wireless communication, cloud computing, data science, and social networks. Theoretical developments including discrete Newton methods, primal-dual methods with convex relaxation, submodular optimization, discrete DC program, along with several applications are discussed and explored in this book through articles by leading experts.
Caracteristici
Broadens understanding of nonlinear combinatorial optimization applications to machine learning, social computing, cloud computing, wireless communication, and data science Features articles by leading experts in nonlinear combinatorial optimization Outlines theoretical developments which utilize Newton methods submodular optimization, and non-submodular maximization