Nonstationarities in Hydrologic and Environmental Time Series: Water Science and Technology Library, cartea 45
Autor A.R. Rao, K.H. Hamed, Huey-Long Chenen Limba Engleză Paperback – 14 sep 2012
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 930.00 lei 43-57 zile | |
SPRINGER NETHERLANDS – 14 sep 2012 | 930.00 lei 43-57 zile | |
Hardback (1) | 939.44 lei 43-57 zile | |
SPRINGER NETHERLANDS – 31 iul 2003 | 939.44 lei 43-57 zile |
Din seria Water Science and Technology Library
- 18% Preț: 931.71 lei
- 15% Preț: 633.54 lei
- 18% Preț: 942.86 lei
- 19% Preț: 546.76 lei
- 18% Preț: 934.33 lei
- Preț: 450.19 lei
- 18% Preț: 727.28 lei
- 18% Preț: 1201.23 lei
- 18% Preț: 937.13 lei
- 18% Preț: 1200.62 lei
- 18% Preț: 760.69 lei
- 18% Preț: 994.19 lei
- 18% Preț: 937.73 lei
- 24% Preț: 744.68 lei
- 18% Preț: 934.02 lei
- 18% Preț: 1085.58 lei
- 18% Preț: 1098.91 lei
- 15% Preț: 631.61 lei
- 18% Preț: 1094.07 lei
- 18% Preț: 717.10 lei
- 24% Preț: 744.31 lei
- 18% Preț: 876.34 lei
- 18% Preț: 1000.05 lei
- 24% Preț: 945.40 lei
- Preț: 553.51 lei
- 18% Preț: 988.64 lei
- 19% Preț: 532.05 lei
Preț: 930.00 lei
Preț vechi: 1134.15 lei
-18% Nou
Puncte Express: 1395
Preț estimativ în valută:
177.98€ • 184.88$ • 147.84£
177.98€ • 184.88$ • 147.84£
Carte tipărită la comandă
Livrare economică 03-17 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789401039796
ISBN-10: 9401039798
Pagini: 396
Ilustrații: XXVII, 365 p.
Dimensiuni: 160 x 240 x 21 mm
Greutate: 0.55 kg
Ediția:2003
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Water Science and Technology Library
Locul publicării:Dordrecht, Netherlands
ISBN-10: 9401039798
Pagini: 396
Ilustrații: XXVII, 365 p.
Dimensiuni: 160 x 240 x 21 mm
Greutate: 0.55 kg
Ediția:2003
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Water Science and Technology Library
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
1. Introduction.- 2. Data Used in the Book.- 2.1. Hydrologic and Climatic Data.- 2.2. Synthetic and Observed Environmental Data.- 2.3. Observed Data.- 3. Time Domain Analysis.- 3.1. Introduction.- 3.2. Visual Inspection of Time Series.- 3.3. Statistical Tests of Significance.- 3.4. Testing Autocorrelated Data.- 3.5. Application of Trend Tests to Hydrologic Data.- 3.6. Conclusions.- 4. Frequency Domain Analysis.- 4.1. Introduction.- 4.2. Conventional Spectral Analysis.- 4.3. Multi-Taper Method (MTM) of Spectral Analysis.- 4.4. Maximum Entropy Spectral Analysis.- 4.5. Spectral Analysis of Hydrologic and Climatic Data.- 4.6. Discussion of Results.- 4.7. Conclusions.- 5. Time-Frequency Analysis.- 5.1. Introduction.- 5.2. Evolutionary Spectral Analysis.- 5.3. Evolution of Line Components in Hydrologic and Climatic Data.- 5.4. Evolution of Continuous Spectra in Hydrologic and Climatic Data.- 5.5. Conclusions.- 6. Time-Scale Analysis.- 6.1. Introduction.- 6.2. Wavelet Analysis.- 6.3. Wavelet Trend Analysis.- 6.4. Identification of Dominant Scales.- 6.5. Time-Scale Distribution.- 6.6. Behavior of Hydrologic and Climatic Time Series at Different Scales.- 6.7. Conclusions.- 7. Segmentation of Non-Stationary Time Series.- 7.1. Introduction.- 7.2. Tests based on AR Models.- 7.3. A test based on wavelet analysis.- 7.4. Segmentation algorithm.- 7.5. Variations of test statistics with the AR order p.- 7.6. Sensitivity of test statistics for detecting change points.- 7.7. Performances of algorithms with and without boundary optimization.- 7.8. Conclusions about the segmentation algorithm.- 8. Estimation of Turbulent Kinetic Energy Dissipation.- 8.1. Introduction.- 8.2. Multi-taper Spectral Estimation.- 8.3. Batchelor Curve Fitting.- 8.4. Comparison of Spectral Estimation Methods.- 8.5.Batchelor Curve Fitting to Synthetic Series.- 8.6. Conclusions on Batchelor curve fitting.- 9. Segmentation of Observed Data.- 9.1. Introduction.- 9.2. Temperature Gradient Profiles.- 9.3. Conclusions on Segmentation of Temperature Gradient Profiles.- 9.4. Hydrologic Series.- 9.5. Conclusions on Segmentation of Hydrologic Series.- 10. Linearity and Gaussianity Analysis.- 10.1. Introduction.- 10.2. Tests for Gaussianity and Linearity (Hinich, 1982).- 10.3. Testing for Stationary Segments.- 10.4. Conclusions about Testing the Hydrologic Series.- 11. Bayesian Detection of Shifts in Hydrologic Time Series.- 11.1. Introduction.- 11.2. Data Used in this Chapter.- 11.3. A Bayesian Method to Detect Shifts in Data.- 11.4. Discussion of Results.- 11.5. Conclusions.- 12. References.- 13. Index.
Recenzii
From the reviews:
"The authors consider a number of modern statistical tests of nonstationarity, including trend analysis, multitaper method and maximum entropy spectral analysis, evolutionary spectral analysis, wavelet analysis, and series segmentation through change point detection. … this book is well organized and easy to read … . A clear distinction is made between processes with discrete, continuous, and mixed spectra … . Nonstationarities in Hydrologic and Environmental Time Series addresses a number of important issues and ideas … ." (Adam Monahan, Bulletin of the American Meteorological Society, March, 2005)
"The authors consider a number of modern statistical tests of nonstationarity, including trend analysis, multitaper method and maximum entropy spectral analysis, evolutionary spectral analysis, wavelet analysis, and series segmentation through change point detection. … this book is well organized and easy to read … . A clear distinction is made between processes with discrete, continuous, and mixed spectra … . Nonstationarities in Hydrologic and Environmental Time Series addresses a number of important issues and ideas … ." (Adam Monahan, Bulletin of the American Meteorological Society, March, 2005)