Numerical Methods for Nonlinear Variational Problems: Scientific Computation
Autor Roland Glowinskien Limba Engleză Paperback – 3 oct 2013
"Numerical Methods for Nonlinear Variational Problems", originally published in the Springer Series in Computational Physics, is a classic in applied mathematics and computational physics and engineering. This long-awaited softcover re-edition is still a valuable resource for practitioners in industry and physics and for advanced students.
Din seria Scientific Computation
- 18% Preț: 1000.37 lei
- 18% Preț: 728.24 lei
- 18% Preț: 871.72 lei
- 18% Preț: 1086.03 lei
- Preț: 380.17 lei
- 20% Preț: 902.00 lei
- Preț: 392.79 lei
- Preț: 378.83 lei
- 15% Preț: 641.38 lei
- Preț: 372.60 lei
- 18% Preț: 1088.82 lei
- Preț: 443.52 lei
- Preț: 381.50 lei
- 18% Preț: 930.78 lei
- 15% Preț: 636.09 lei
- 15% Preț: 583.82 lei
- 18% Preț: 923.52 lei
- 15% Preț: 494.97 lei
- Preț: 381.87 lei
- 15% Preț: 639.80 lei
- 18% Preț: 938.04 lei
- 15% Preț: 640.75 lei
- 15% Preț: 630.97 lei
- 15% Preț: 636.27 lei
- Preț: 380.33 lei
- 18% Preț: 938.95 lei
- 18% Preț: 1106.62 lei
- 18% Preț: 947.96 lei
- 15% Preț: 686.57 lei
- Preț: 392.97 lei
- 15% Preț: 585.91 lei
- Preț: 377.87 lei
- Preț: 386.95 lei
- Preț: 377.34 lei
- 18% Preț: 1084.18 lei
- 15% Preț: 493.99 lei
- 15% Preț: 584.33 lei
- 15% Preț: 640.75 lei
Preț: 637.71 lei
Preț vechi: 750.25 lei
-15% Nou
Puncte Express: 957
Preț estimativ în valută:
122.06€ • 127.99$ • 100.86£
122.06€ • 127.99$ • 100.86£
Carte tipărită la comandă
Livrare economică 29 ianuarie-12 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783662126158
ISBN-10: 366212615X
Pagini: 512
Ilustrații: XVII, 493 p.
Dimensiuni: 155 x 235 x 27 mm
Greutate: 0.71 kg
Ediția:Softcover reprint of the original 1st ed. 1984
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Scientific Computation
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 366212615X
Pagini: 512
Ilustrații: XVII, 493 p.
Dimensiuni: 155 x 235 x 27 mm
Greutate: 0.71 kg
Ediția:Softcover reprint of the original 1st ed. 1984
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Scientific Computation
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
Professional/practitionerCuprins
I Generalities on Elliptic Variational Inequalities and on Their Approximation.- II Application of the Finite Element Method to the Approximation of Some Second-Order EVI.- III On the Approximation of Parabolic Variational Inequalities.- IV Applications of Elliptic Variational Inequality Methods to the Solution of Some Nonlinear Elliptic Equations.- V Relaxation Methods and Applications.- VI Decomposition-Coordination Methods by Augmented Lagrangian: Applications.- VII Least-Squares Solution of Nonlinear Problems: Application to Nonlinear Problems in Fluid Dynamics.- Appendix I A Brief Introduction to Linear Variational Problems.- 1. Introduction.- 2. A Family of Linear Variational Problems.- 3. Internal Approximation of Problem (P).- 4. Application to the Solution of Elliptic Problems for Partial Differential Operators.- 5. Further Comments: Conclusion.- Appendix II A Finite Element Method with Upwinding for Second-Order Problems with Large First Order Terms.- 1. Introduction.- 2. The Model Problem.- 3. A Centered Finite Element Approximation.- 4. A Finite Element Approximation with Upwinding.- 5. On the Solution of the Linear System Obtained by Upwinding.- 6. Numerical Experiments.- 7. Concluding Comments.- Appendix III Some Complements on the Navier-Stokes Equations and Their Numerical Treatment.- 1. Introduction.- 4. Further Comments on the Boundary Conditions.- 5. Decomposition Properties of the Continuous and Discrete Stokes Problems of Sec. 4. Application to Their Numerical Solution.- 6. Further Comments.- Some Illustrations from an Industrial Application.- Glossary of Symbols.- Author Index.
Caracteristici
Long awaited softcover re-publication of a highly cited Classic in Applied Mathematics and Computational Physics Benefits graduate students and practitioners in applied mathematics, computational physics and engineering With excercises throughout the text