One-Dimensional Linear Singular Integral Equations: Vol.II: General Theory and Applications: Operator Theory: Advances and Applications, cartea 54
Autor I. Gohberg, N. Krupniken Limba Engleză Hardback – 27 aug 1992
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (2) | 582.63 lei 6-8 săpt. | |
Birkhäuser Basel – 30 oct 2012 | 582.63 lei 6-8 săpt. | |
Birkhäuser Basel – 28 sep 2012 | 633.66 lei 6-8 săpt. | |
Hardback (2) | 584.06 lei 6-8 săpt. | |
Birkhauser – 27 aug 1992 | 584.06 lei 6-8 săpt. | |
Birkhäuser Basel – 1992 | 645.47 lei 6-8 săpt. |
Din seria Operator Theory: Advances and Applications
- 18% Preț: 890.54 lei
- 20% Preț: 574.08 lei
- 18% Preț: 1127.60 lei
- 15% Preț: 643.34 lei
- 18% Preț: 961.55 lei
- Preț: 395.63 lei
- 15% Preț: 648.05 lei
- 18% Preț: 737.71 lei
- 15% Preț: 653.14 lei
- Preț: 384.48 lei
- 15% Preț: 644.82 lei
- 15% Preț: 645.79 lei
- Preț: 402.00 lei
- 15% Preț: 650.04 lei
- 15% Preț: 660.83 lei
- 15% Preț: 639.08 lei
- 18% Preț: 940.09 lei
- 15% Preț: 648.05 lei
- Preț: 388.90 lei
- 18% Preț: 728.11 lei
- 20% Preț: 574.08 lei
- 15% Preț: 645.79 lei
- 18% Preț: 1128.89 lei
- 15% Preț: 646.11 lei
- 15% Preț: 648.89 lei
- 18% Preț: 745.33 lei
- 18% Preț: 1124.47 lei
- 15% Preț: 647.08 lei
- 15% Preț: 662.62 lei
- Preț: 392.75 lei
- 18% Preț: 960.96 lei
- 15% Preț: 646.43 lei
- 18% Preț: 738.37 lei
Preț: 584.06 lei
Preț vechi: 687.13 lei
-15% Nou
Puncte Express: 876
Preț estimativ în valută:
111.78€ • 116.25$ • 93.54£
111.78€ • 116.25$ • 93.54£
Carte tipărită la comandă
Livrare economică 14-28 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783764327965
ISBN-10: 3764327960
Pagini: 232
Greutate: 0.58 kg
Editura: Birkhauser
Colecția Birkhauser
Seria Operator Theory: Advances and Applications
Locul publicării:Basel, Switzerland
ISBN-10: 3764327960
Pagini: 232
Greutate: 0.58 kg
Editura: Birkhauser
Colecția Birkhauser
Seria Operator Theory: Advances and Applications
Locul publicării:Basel, Switzerland
Public țintă
ResearchCuprins
6 Preliminaries.- 6.1 The operator of singular integration.- 6.2 The space Lp(?,?).- 6.3 Singular integral operators.- 6.4 The spaces $$L_{p}^{ + }(\Gamma ,\rho ),L_{p}^{ - }(\Gamma ,\rho ) and \mathop{{L_{p}^{ - }}}\limits^{^\circ } (\Gamma ,\rho )$$.- 6.5 Factorization.- 6.6 One-sided invertibility of singular integral operators.- 6.7 Fredholm operators.- 6.8 The local principle for singular integral operators.- 6.9 The interpolation theorem.- 7 General theorems.- 7.1 Change of the curve.- 7.2 The quotient norm of singular integral operators.- 7.3 The principle of separation of singularities.- 7.4 A necessary condition.- 7.5 Theorems on kernel and cokernel of singular integral operators.- 7.6 Two theorems on connections between singular integral operators.- 7.7 Index cancellation and approximative inversion of singular integral operators.- 7.8 Exercises.- Comments and references.- 8 The generalized factorization of bounded measurable functions and its applications.- 8.1 Sketch of the problem.- 8.2 Functions admitting a generalized factorization with respect to a curve in Lp(?, ?).- 8.3 Factorization in the spaces Lp(?, ?).- 8.4 Application of the factorization to the inversion of singular integral operators.- 8.5 Exercises.- Comments and references.- 9 Singular integral operators with piecewise continuous coefficients and their applications.- 9.1 Non-singular functions and their index.- 9.2 Criteria for the generalized factorizability of power functions.- 9.3 The inversion of singular integral operators on a closed curve.- 9.4 Composed curves.- 9.5 Singular integral operators with continuous coefficients on a composed curve.- 9.6 The case of the real axis.- 9.7 Another method of inversion.- 9.8 Singular integral operators with regel functions coefficients.- 9.9Estimates for the norms of the operators P?, Q? and S?.- 9.10 Singular operators on spaces H?o(?, ?).- 9.11 Singular operators on symmetric spaces.- 9.12 Fredholm conditions in the case of arbitrary weights.- 9.13 Technical lemmas.- 9.14 Toeplitz and paired operators with piecewise continuous coefficients on the spaces lp and ?p.- 9.15 Some applications.- 9.16 Exercises.- Comments and references.- 10 Singular integral operators on non-simple curves.- 10.1 Technical lemmas.- 10.2 A preliminary theorem.- 10.3 The main theorem.- 10.4 Exercises.- Comments and references.- 11 Singular integral operators with coefficients having discontinuities of almost periodic type.- 11.1 Almost periodic functions and their factorization.- 11.2 Lemmas on functions with discontinuities of almost periodic type.- 11.3 The main theorem.- 11.4 Operators with continuous coefficients — the degenerate case.- 11.5 Exercises.- Comments and references.- 12 Singular integral operators with bounded measurable coefficients.- 12.1 Singular operators with measurable coefficients in the space L2(?).- 12.2 Necessary conditions in the space L2(?).- 12.3 Lemmas.- 12.4 Singular operators with coefficients in ?p(?). Sufficient conditions.- 12.5 The Helson-Szegö theorem and its generalization.- 12.6 On the necessity of the condition a ? Sp.- 12.7 Extension of the class of coefficients.- 12.8 Exercises.- Comments and references.- 13 Exact constants in theorems on the boundedness of singular operators.- 13.1 Norm and quotient norm of the operator of singular integration.- 13.2 A second proof of Theorem 4.1 of Chapter 12.- 13.3 Norm and quotient norm of the operator S? on weighted spaces.- 13.4 Conditions for Fredholmness in spaces Lp(?, ?).- 13.5 Norms and quotient norm of the operator aI +bS?.- 13.6 Exercises.- Comments and references.- References.