Optimal Control of Wind Energy Systems: Towards a Global Approach: Advances in Industrial Control
Autor Iulian Munteanu, Antoneta Iuliana Bratcu, Nicolaos-Antonio Cutululis, Emil Ceangaen Limba Engleză Paperback – 21 oct 2010
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 1049.84 lei 6-8 săpt. | |
SPRINGER LONDON – 21 oct 2010 | 1049.84 lei 6-8 săpt. | |
Hardback (1) | 1055.54 lei 6-8 săpt. | |
SPRINGER LONDON – 28 mar 2008 | 1055.54 lei 6-8 săpt. |
Din seria Advances in Industrial Control
- 18% Preț: 853.47 lei
- 23% Preț: 582.63 lei
- 18% Preț: 742.57 lei
- Preț: 363.80 lei
- 20% Preț: 568.24 lei
- 18% Preț: 896.64 lei
- 18% Preț: 690.42 lei
- 18% Preț: 844.21 lei
- 18% Preț: 701.45 lei
- 18% Preț: 910.39 lei
- 15% Preț: 604.75 lei
- 15% Preț: 611.24 lei
- 18% Preț: 1335.30 lei
- 15% Preț: 609.22 lei
- 15% Preț: 609.40 lei
- 18% Preț: 851.07 lei
- 18% Preț: 897.26 lei
- 15% Preț: 609.40 lei
- 15% Preț: 619.78 lei
- 18% Preț: 899.63 lei
- 15% Preț: 609.89 lei
- 18% Preț: 1318.40 lei
- 18% Preț: 899.97 lei
- 18% Preț: 899.66 lei
- 18% Preț: 899.20 lei
- 18% Preț: 900.25 lei
- 18% Preț: 1054.79 lei
- 15% Preț: 615.74 lei
- 15% Preț: 610.93 lei
- 18% Preț: 900.09 lei
- 18% Preț: 898.43 lei
- 18% Preț: 1053.72 lei
- 15% Preț: 610.62 lei
- 18% Preț: 902.79 lei
- 18% Preț: 895.61 lei
- 15% Preț: 607.07 lei
- 15% Preț: 607.07 lei
- 20% Preț: 616.56 lei
- 18% Preț: 1053.72 lei
- 20% Preț: 945.56 lei
- 15% Preț: 608.97 lei
- 18% Preț: 1060.17 lei
- 18% Preț: 898.74 lei
- 18% Preț: 1308.28 lei
- 15% Preț: 617.15 lei
- 15% Preț: 612.94 lei
- 20% Preț: 563.66 lei
- 18% Preț: 945.23 lei
- 18% Preț: 1160.89 lei
Preț: 1049.84 lei
Preț vechi: 1280.30 lei
-18% Nou
Puncte Express: 1575
Preț estimativ în valută:
200.95€ • 216.07$ • 167.53£
200.95€ • 216.07$ • 167.53£
Carte tipărită la comandă
Livrare economică 19 decembrie 24 - 02 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781849967242
ISBN-10: 1849967245
Pagini: 308
Ilustrații: XXII, 286 p.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.44 kg
Ediția:Softcover reprint of hardcover 1st ed. 2008
Editura: SPRINGER LONDON
Colecția Springer
Seria Advances in Industrial Control
Locul publicării:London, United Kingdom
ISBN-10: 1849967245
Pagini: 308
Ilustrații: XXII, 286 p.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.44 kg
Ediția:Softcover reprint of hardcover 1st ed. 2008
Editura: SPRINGER LONDON
Colecția Springer
Seria Advances in Industrial Control
Locul publicării:London, United Kingdom
Public țintă
ResearchCuprins
Wind Energy.- Wind Energy Conversion Systems.- WECS Modelling.- Basics of the Wind Turbine Control Systems.- Design Methods for WECS Optimal Control with Energy Efficiency Criterion.- WECS Optimal Control with Mixed Criteria.- Development Systems for Experimental Investigation of WECS Control Structures.- General Conclusion.
Recenzii
From the reviews:
“The book under review provides technical background on wind turbines specifically tailored for the controls engineer, and thus the target audience for this text is members of the control research community who are interested in wind energy applications. … an excellent reference for researchers in the field pursuing one of the methodologies covered in the text. … the book demonstrates a few advanced control approaches with enough detail for the interested reader to embark on research using the methods presented in the book.” (Jason H. Laks and Lucy Y. Pao, IEEE Control Systems Magazine, Vol. 29, June, 2009)
“The book under review provides technical background on wind turbines specifically tailored for the controls engineer, and thus the target audience for this text is members of the control research community who are interested in wind energy applications. … an excellent reference for researchers in the field pursuing one of the methodologies covered in the text. … the book demonstrates a few advanced control approaches with enough detail for the interested reader to embark on research using the methods presented in the book.” (Jason H. Laks and Lucy Y. Pao, IEEE Control Systems Magazine, Vol. 29, June, 2009)
Notă biografică
The authors are with the Advanced Control System Research Centre at "Dunarea de Jos" University of Galati in Romania. Their research interests are in the domain of static and dynamic optimizations, with a focus on dynamic system optimal control. The interest in the control of the wind energy conversion systems dates back to 1993.
Iulian Munteanu received a B.Eng. degree in applied electronics from "Dunarea de Jos" University of Galati in Romania in 1996, a M.Sc. degree in instrumentation and control from Université du Havre in France in 1997 and a Ph.D. degree in automatic control systems from "Dunarea de Jos" University of Galati in Romania in 2006, by defending a dissertation on the optimal control of wind power systems. From 1998 he is with the Department of Electronics and Telecommunications from "Dunarea de Jos" University of Galati in Romania. Between 2000 and 2005 he has had three doctoral stages at Laboratoire d'Électrotechnique de Grenoble in France, where he has worked on controlling the variable-speed asynchronous-machine-based wind power systems. He has authored and co-authored 1 book, 7 research reports, about 10 papers at international conferences and 5 papers in international journals. At the present he is a post-doctoral researcher at Grenoble Génie Électrique Laboratory in France.
Antoneta Iuliana Bratcu received a M.Sc. degree in electrical engineering from "Dunarea de Jos University of Galati in Romania in 1996 and a doctoral degree in automatic control and computer science from Université de Franche-Comté de Besançon in France in 2001. Her research interests include both discrete and continuous optimization. Between 2002 and 2005 she has had two post-doctoral stages respectively at Université de Technologie de Troyes and École Nationale Supérieure des Mines de Saint Étienne in France. She has authored and co-authored 2 books, 3 research reports, more than 25 papers at international conferences and 9 papers ininternational journals. In 2007 she joined the Department of Electrical Energy Conversion Systems from "Dunarea de Jos" University of Galati in Romania, where she is an associate professor. She is presently working as a post-doctoral researcher at Grenoble Génie Électrique Laboratory in France.
Nicolas-Antonio Cutululis received a M.Sc. degree in advanced automatic control and artificial intelligence and a Ph.D. degree in automatic control systems, both from "Dunarea de Jos" University of Galati in Romania in 1999 and 2005 respectively. His Ph.D. dissertation thesis concerns the design of control strategies for hybrid wind energy conversion systems. He has authored and co-authored 1 book, 5 research reports, 5 papers at international conferences and 7 papers in international journals. From 1999 he joined the Department of Electrical Energy Conversion Systems at "Dunarea de Jos University of Galati in Romania. At the present he is a scientist with the Wind Energy Department at Risø National Laboratory in Denmark.
Emil Ceanga received a M.Sc. degree in electronics and a Ph.D. degree in automatic control systems, both from Bucharest Polytechnic Institute in Romania, in 1961 and 1969 respectively. Between 1993 and 2004 he has been five times visiting professor at Groupe de Recherche en Automatique et Électrotechnique at Université du Havre in France and one time visiting professor at Université du Québec à Rimouski in Canada. In 2004 he received the distinction "Palmes Académiques" from the French Government. He has advised 15 Ph.D. dissertations and has authored and co-authored 15 books and more than 130 papers at international conferences and in international journals. Between 2001 and 2006 he was Director of the Advanced Control System Research Centre at "Dunarea de Jos University of Galati in Romania. He is presently a professor of electrical engineering at the Department of Electrical Energy Conversion Systems at the sameuniversity.
Iulian Munteanu received a B.Eng. degree in applied electronics from "Dunarea de Jos" University of Galati in Romania in 1996, a M.Sc. degree in instrumentation and control from Université du Havre in France in 1997 and a Ph.D. degree in automatic control systems from "Dunarea de Jos" University of Galati in Romania in 2006, by defending a dissertation on the optimal control of wind power systems. From 1998 he is with the Department of Electronics and Telecommunications from "Dunarea de Jos" University of Galati in Romania. Between 2000 and 2005 he has had three doctoral stages at Laboratoire d'Électrotechnique de Grenoble in France, where he has worked on controlling the variable-speed asynchronous-machine-based wind power systems. He has authored and co-authored 1 book, 7 research reports, about 10 papers at international conferences and 5 papers in international journals. At the present he is a post-doctoral researcher at Grenoble Génie Électrique Laboratory in France.
Antoneta Iuliana Bratcu received a M.Sc. degree in electrical engineering from "Dunarea de Jos University of Galati in Romania in 1996 and a doctoral degree in automatic control and computer science from Université de Franche-Comté de Besançon in France in 2001. Her research interests include both discrete and continuous optimization. Between 2002 and 2005 she has had two post-doctoral stages respectively at Université de Technologie de Troyes and École Nationale Supérieure des Mines de Saint Étienne in France. She has authored and co-authored 2 books, 3 research reports, more than 25 papers at international conferences and 9 papers ininternational journals. In 2007 she joined the Department of Electrical Energy Conversion Systems from "Dunarea de Jos" University of Galati in Romania, where she is an associate professor. She is presently working as a post-doctoral researcher at Grenoble Génie Électrique Laboratory in France.
Nicolas-Antonio Cutululis received a M.Sc. degree in advanced automatic control and artificial intelligence and a Ph.D. degree in automatic control systems, both from "Dunarea de Jos" University of Galati in Romania in 1999 and 2005 respectively. His Ph.D. dissertation thesis concerns the design of control strategies for hybrid wind energy conversion systems. He has authored and co-authored 1 book, 5 research reports, 5 papers at international conferences and 7 papers in international journals. From 1999 he joined the Department of Electrical Energy Conversion Systems at "Dunarea de Jos University of Galati in Romania. At the present he is a scientist with the Wind Energy Department at Risø National Laboratory in Denmark.
Emil Ceanga received a M.Sc. degree in electronics and a Ph.D. degree in automatic control systems, both from Bucharest Polytechnic Institute in Romania, in 1961 and 1969 respectively. Between 1993 and 2004 he has been five times visiting professor at Groupe de Recherche en Automatique et Électrotechnique at Université du Havre in France and one time visiting professor at Université du Québec à Rimouski in Canada. In 2004 he received the distinction "Palmes Académiques" from the French Government. He has advised 15 Ph.D. dissertations and has authored and co-authored 15 books and more than 130 papers at international conferences and in international journals. Between 2001 and 2006 he was Director of the Advanced Control System Research Centre at "Dunarea de Jos University of Galati in Romania. He is presently a professor of electrical engineering at the Department of Electrical Energy Conversion Systems at the sameuniversity.
Textul de pe ultima copertă
Owing to the stochastic nature of their primary energy source, workable performance of wind energy conversion systems cannot be achieved without the contribution of automatic control.
Optimal Control of Wind Energy Systems presents a thoroughgoing review of the main control issues in wind power generation, offering a unified picture of the issues in optimal control of wind power generation. A series of optimal control techniques are analyzed, assessed and compared, starting with the classical ones, like PI control, maximum power point strategies and gain-scheduling techniques, and continuing with some modern ones: sliding-mode techniques, feedback linearization control and robust control. Discussion is focused on a global dynamic optimization approach to wind power systems using a set of optimization criteria which comply with a comprehensive group of requirements including: energy conversion efficiency; mechanical reliability; and quality of the energy provided.
The main results are presented along with illustration by case studies and MATLAB®/Simulink® simulation assessment. The corresponding programmes and block diagrams can be downloaded from the book’s page at springer.com. For some of the case studies presented, real-time simulation results are also available, illustrative examples which will be useful in easing technology transfer in control engineering associated with wind power systems.
Control engineers, researchers and graduate students interested in learning and applying systematic optimization procedures to wind power systems will find this a most useful guide to the field.
Optimal Control of Wind Energy Systems presents a thoroughgoing review of the main control issues in wind power generation, offering a unified picture of the issues in optimal control of wind power generation. A series of optimal control techniques are analyzed, assessed and compared, starting with the classical ones, like PI control, maximum power point strategies and gain-scheduling techniques, and continuing with some modern ones: sliding-mode techniques, feedback linearization control and robust control. Discussion is focused on a global dynamic optimization approach to wind power systems using a set of optimization criteria which comply with a comprehensive group of requirements including: energy conversion efficiency; mechanical reliability; and quality of the energy provided.
The main results are presented along with illustration by case studies and MATLAB®/Simulink® simulation assessment. The corresponding programmes and block diagrams can be downloaded from the book’s page at springer.com. For some of the case studies presented, real-time simulation results are also available, illustrative examples which will be useful in easing technology transfer in control engineering associated with wind power systems.
Control engineers, researchers and graduate students interested in learning and applying systematic optimization procedures to wind power systems will find this a most useful guide to the field.
Caracteristici
Links the practical requirements of industrial wind-based power generation with the latest advanced control algorithms Helps to make wind power generation feasible, reducing greenhouse gas emissions Compares various methods of optimal control so that readers can make informed choices about which is best for their systems Proposes an holistic approach tying control design to energetic efficiency, energy conditioning and quality, and mechanical reliability Includes supplementary material: sn.pub/extras