Optimale Fahrpläne: Lecture Notes in Economics and Mathematical Systems, cartea 20
Autor Götz Uebede Limba Germană Paperback –
Din seria Lecture Notes in Economics and Mathematical Systems
- Preț: 360.02 lei
- Preț: 279.18 lei
- Preț: 383.93 lei
- Preț: 384.09 lei
- Preț: 380.07 lei
- Preț: 446.26 lei
- Preț: 497.37 lei
- Preț: 380.84 lei
- Preț: 384.86 lei
- Preț: 378.34 lei
- Preț: 399.67 lei
- 20% Preț: 360.93 lei
- 15% Preț: 643.16 lei
- Preț: 379.09 lei
- Preț: 404.74 lei
- Preț: 385.62 lei
- 15% Preț: 644.49 lei
- Preț: 379.09 lei
- Preț: 345.50 lei
- Preț: 425.80 lei
- Preț: 378.34 lei
- 18% Preț: 775.65 lei
- Preț: 392.60 lei
- Preț: 401.61 lei
- 15% Preț: 646.43 lei
- Preț: 382.18 lei
- Preț: 378.34 lei
- 15% Preț: 637.59 lei
- 15% Preț: 647.27 lei
- Preț: 377.73 lei
- Preț: 447.84 lei
- 15% Preț: 644.49 lei
- Preț: 386.00 lei
- 15% Preț: 654.43 lei
- Preț: 415.02 lei
- Preț: 411.54 lei
- Preț: 398.92 lei
- Preț: 398.92 lei
- Preț: 392.75 lei
- 15% Preț: 635.47 lei
- 20% Preț: 653.56 lei
- Preț: 379.86 lei
- Preț: 495.46 lei
- Preț: 447.99 lei
- Preț: 378.71 lei
- 15% Preț: 637.13 lei
- Preț: 385.84 lei
- Preț: 378.54 lei
- 15% Preț: 666.55 lei
Preț: 417.30 lei
Nou
Puncte Express: 626
Preț estimativ în valută:
79.87€ • 82.31$ • 67.43£
79.87€ • 82.31$ • 67.43£
Carte tipărită la comandă
Livrare economică 03-17 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540049449
ISBN-10: 3540049444
Pagini: 180
Ilustrații: IX, 165 S.
Dimensiuni: 178 x 254 x 9 mm
Greutate: 0.32 kg
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Economics and Mathematical Systems
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540049444
Pagini: 180
Ilustrații: IX, 165 S.
Dimensiuni: 178 x 254 x 9 mm
Greutate: 0.32 kg
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Economics and Mathematical Systems
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
1 Die Grundstruktur des Fahrplanproblems.- (1) Das geographische Teilproblem (Transportaufgabe).- (2) Das zeitliche Teilproblem (Zeitliche Struktur).- (3) Das Fahrzeug-Teilproblem (Flugzeugeinsatz).- (4) Das Realisierbarkeits-Problem.- (5) Das Problem der Zielfunktion.- (6) Das Problem der zusammenhängenden Lösung des Gesamtproblems.- 2 Das Klassische Transportproblem.- I Das einstufige Transportproblem.- II Das klassische Transportproblem mit zweistufiger Bestimmung eines Fahrplans.- III Das klassische Transportproblem mit Periodisierung.- IV Das klassische Transportproblem mit Periodisierung und Lagerhaltung.- 3 Das Klassische Ernennungsproblem.- I Formulierung und Interpretation.- II Die Bestimmung der Koeffizienten der Zielfunktion.- III Die Bestimmung der Anschlüsse.- IV Diskussion der bearbeiteten Beispiele.- 4 Der Fahrplan-Graph von Bartlett.- (1) Allgemeines.- (2) Die Abzählregel für die Fahrzeugzahl.- (3) Die Bestimmung der Fahrzeugeinsatzfolgen.- (4) Diskussion.- 5 Veränderungen in Einem Pesteieenden Fahrplan.- I,(1) Die Fragestellung.- II Verbesserungsversuch unter Berücksichtigung der Gesamtwartezeiten.- III Der Einfluß einer Reise auf die erforderliche Fahrzeugzahl über die ganze Periode.- IV Die Änderung im Zuge der Bestimmung der Lösung.- V Stochastisch bestimmte Fahrpläne.- VI Das Kompressionsverfahren.- VII Die Veränderung eines Fahrplans aus der Bartlett-Anschlußmatrix.- 6 Die Direkte Lineare Programmierungs-Formulierung.- I Ein allgemeines LP-Modell.- II Die Erweiterung des Grundmodells.- 7 Das „Verallgemeinerte“ Transportproblem.- (1) Ansatz.- (2) Diskussion.- (3) Die Erweiterung des Modells bei stochastischer Nachfrage.- (4) Das verallgemeinerte Transportproblem von Krelle.- (5) Der Vergleich der Ansätze von Dantzig und Krelle.- 8Der Übergang zur Gruppe der Synthese-Probleme von Hu-Gomory.- (1) Das Problem von Bartlett und Charnes.- (2) Das allgemeine Syntheseproblem.- 9 Modetir der Ganzzahligen Programmierung.- (1) Die Bedeutung der Ganzzahligkeit.- (2) Ein Modell vam Typ des „branch and bound“.- (3) Ein Modell zum Gomory-Algorithmus.- (4) Das Umsteigeproblem von Krelle.- (5) Das Sonderproblem des Sternverkehrs.- (6) Die Formulierung als ein Reihenfolgeproblem.- 10 Das Wartezeitproblem von Tingaud und Jewell.- (1) Die Bedienungshäufigkeit als Entscheidungsgröße.- (2) Die gleichmäßige Nachfrageverteilung.- (3) Der Ansatz.- (4) Diskussion.- 11 Dynamische Programmierungsansätze.- (1) Allgemeines.- (2) Das Dynamische Programm von Bisbee.- (3) Das Dynamische Program von Larson.- (4) Der Dynamische Progranmierungs-Ansatz über eine sukzessive Annäherung.- (5) Das allgemeine Problem der Flugplanbestimung über ein Dynamisches Program fUr den längsten Pfad.