Partial Differential Equations through Examples and Exercises: Texts in the Mathematical Sciences, cartea 18
Autor E. Pap, Arpad Takaci, Djurdjica Takacien Limba Engleză Hardback – 31 oct 1997
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 374.54 lei 6-8 săpt. | |
SPRINGER NETHERLANDS – 11 oct 2012 | 374.54 lei 6-8 săpt. | |
Hardback (1) | 381.63 lei 6-8 săpt. | |
SPRINGER NETHERLANDS – 31 oct 1997 | 381.63 lei 6-8 săpt. |
Din seria Texts in the Mathematical Sciences
- 15% Preț: 614.34 lei
- Preț: 372.17 lei
- 15% Preț: 612.50 lei
- 18% Preț: 1160.16 lei
- 18% Preț: 752.12 lei
- 15% Preț: 618.06 lei
- 18% Preț: 1723.90 lei
- 15% Preț: 608.16 lei
- 18% Preț: 1315.89 lei
- Preț: 371.11 lei
- Preț: 377.99 lei
- 15% Preț: 603.96 lei
- 15% Preț: 618.21 lei
- Preț: 379.84 lei
- 18% Preț: 907.11 lei
- Preț: 373.61 lei
- 15% Preț: 507.76 lei
- 15% Preț: 618.06 lei
- 18% Preț: 1060.01 lei
- 15% Preț: 569.13 lei
Preț: 381.63 lei
Nou
Puncte Express: 572
Preț estimativ în valută:
73.06€ • 79.16$ • 61.01£
73.06€ • 79.16$ • 61.01£
Carte tipărită la comandă
Livrare economică 12-26 decembrie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780792347248
ISBN-10: 0792347242
Pagini: 404
Ilustrații: XII, 404 p.
Dimensiuni: 155 x 235 x 24 mm
Greutate: 0.76 kg
Ediția:1997
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Texts in the Mathematical Sciences
Locul publicării:Dordrecht, Netherlands
ISBN-10: 0792347242
Pagini: 404
Ilustrații: XII, 404 p.
Dimensiuni: 155 x 235 x 24 mm
Greutate: 0.76 kg
Ediția:1997
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Texts in the Mathematical Sciences
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
1 Introduction.- 1.1 Basic Notions.- 1.2 The Cauchy-Kowalevskaya Theorem.- 1.3 Equations of Mathematical Physics.- 2 First Order PDEs.- 2.1 Quasi-linear PDEs.- 2.2 Pfaff’s Equations.- 2.3 Nonlinear First Order PDEs.- 3 Classification of the Second Order PDEs.- 3.1 Two Independent Variables.- 3.2 n Independent Variables.- 3.3 Wave, Potential and Heat Equation.- 4 Hyperbolic Equations.- 4.1 Cauchy Problem for the One-dimensional Wave Equation.- 4.2 Cauchy Problem for the n-dimensional Wave Equation.- 4.3 The Fourier Method of Separation Variables.- 4.4 The Sturm—Liouville Problem.- 4.5 Miscellaneous Problems.- 4.6 The Vibrating String.- 5 Elliptic Equations.- 5.1 Dirichlet Problem.- 5.2 The Maximum Principle.- 5.3 The Green Function.- 5.4 The Harmonic Functions.- 5.5 Gravitational Potential.- 6 Parabolic Equations.- 6.1 Cauchy Problem.- 6.2 Mixed Type Problem.- 6.3 Heat conduction.- 7 Numerical Methods.- 7.0.1 Preliminaries.- 7.0.2 Examples and Exercises.- 8 Lebesgue’s Integral, Fourier Transform.- 8.1 Lebesgue’s Integral and the L2(Q) Space.- 8.2 Delta Nets.- 8.3 The Surface Integrals.- 8.4 The Fourier Transform.- 9 Generalized Derivative and Sobolev Spaces.- 9.1 Generalized Derivative.- 9.2 Sobolev Spaces.- 10 Some Elements from Functional Analysis.- 10.1 Hilbert Space.- 10.2 The Fredholm Alternatives.- 10.3 Normed Vector Spaces.- 11 Functional Analysis Methods in PDEs.- 11.1 Generalized Dirichlet Problem.- 11.2 The Generalized Mixed Problems.- 11.3 Numerical Solutions.- 11.4 Miscellaneous.- 12 Distributions in the theory of PDEs.- 12.1 Basic Properties.- 12.2 Fundamental Solutions.