The Queen of Mathematics: An Introduction to Number Theory: Texts in the Mathematical Sciences, cartea 8
Autor W. S. Anglinen Limba Engleză Hardback – 31 ian 1995
We have made the proofs of these theorems as elementary as possible.
Unique to The Queen of Mathematics are its presentations of the topic of palindromic simple continued fractions, an elementary solution of Lucas's square pyramid problem, Baker's solution for simultaneous Fermat equations, an elementary proof of Fermat's polygonal number conjecture, and the Lambek-Moser-Wild theorem.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 1081.12 lei 6-8 săpt. | |
SPRINGER NETHERLANDS – 21 dec 2011 | 1081.12 lei 6-8 săpt. | |
Hardback (1) | 1087.10 lei 6-8 săpt. | |
SPRINGER NETHERLANDS – 31 ian 1995 | 1087.10 lei 6-8 săpt. |
Din seria Texts in the Mathematical Sciences
- Preț: 375.52 lei
- 15% Preț: 629.99 lei
- Preț: 381.57 lei
- 15% Preț: 628.11 lei
- 18% Preț: 1189.80 lei
- 18% Preț: 771.32 lei
- 15% Preț: 633.81 lei
- 18% Preț: 1768.03 lei
- 15% Preț: 623.65 lei
- Preț: 391.30 lei
- 18% Preț: 1349.53 lei
- Preț: 387.56 lei
- 15% Preț: 619.34 lei
- 15% Preț: 633.95 lei
- Preț: 389.46 lei
- 18% Preț: 930.27 lei
- Preț: 383.06 lei
- 15% Preț: 520.65 lei
- 15% Preț: 633.81 lei
- 15% Preț: 583.61 lei
Preț: 1087.10 lei
Preț vechi: 1325.73 lei
-18% Nou
Puncte Express: 1631
Preț estimativ în valută:
208.04€ • 218.17$ • 173.47£
208.04€ • 218.17$ • 173.47£
Carte tipărită la comandă
Livrare economică 08-22 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780792332879
ISBN-10: 0792332873
Pagini: 390
Ilustrații: X, 390 p.
Dimensiuni: 155 x 235 x 24 mm
Greutate: 0.74 kg
Ediția:1995
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Texts in the Mathematical Sciences
Locul publicării:Dordrecht, Netherlands
ISBN-10: 0792332873
Pagini: 390
Ilustrații: X, 390 p.
Dimensiuni: 155 x 235 x 24 mm
Greutate: 0.74 kg
Ediția:1995
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Texts in the Mathematical Sciences
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
1 Propaedeutics.- 1.1 Mathematical Induction.- 1.2 Bernoulli Numbers.- 1.3 Primes.- 1.4 Perfect Numbers.- 1.5 Greatest Integer function.- 1.6 Pythagorean Triangles.- 1.7 Diophantine Equations.- 1.8 Four Square Theorem.- 1.9 Fermat’s Last Theorem.- 1.10 Congruent Numbers.- 1.11 Möbius function.- 2 Simple Continued Fractions.- 2.1 Convergents and Convergence.- 2.2 Uniqueness of SCF Expansions.- 2.3 SCF Expansions of Rationals.- 2.4 Farey Series.- 2.5 Ax + By = C.- 2.6 SCF Approximations.- 2.7 SCF Expansions of Quadratic Surds.- 2.8 Periodic SCF Expansions.- 2.9 Pell Equation.- 2.10 Prefaced Palindromes.- 3 Congruence.- 3.1 Basic Properties.- 3.2 Euler’s ?-Function.- 3.3 Primitive Roots.- 3.4 Decimal Expansions.- 3.5 x2 ? R (mod C).- 3.6 Palindromic SCF’s.- 3.7 Sums of Two Squares.- 3.8 Quadratic Residues.- 3.9 Theorema Aureum.- 3.10 Jacobi Symbol.- 3.11 More on x2 ? R (mod C).- 3.12 Ax2 + By = C.- 4 x2?Ry2 = C.- 4.1 SCF Solution.- 4.2 Recursive Formulas for Solutions.- 4.3 Ax2 + Bxy + Cy2 + Dx + Ey = F.- 4.4 Square Pyramid Problem.- 4.5 Lucas’s Test for Perfect Numbers.- 4.6 Simultaneous Fermat Equations.- 5 Classical Construction Problems.- 5.1 Euclidean Constructions.- 5.2 Fields and Vector Spaces.- 5.3 Limits of Ruler and Compass Construction.- 5.4 Gauss’s Constructions.- 5.5 Fermat Primes.- 5.6 The Transcendence of ?.- 6 The Polygonal Number Theorem.- 6.1 Gaussian Forms.- 6.2 Ternary Quadratic Form Matrices.- 6.3 Omega Kernel or Square Forms.- 6.4 Ambiguous or Self-Inverse Forms.- 6.5 Sums of Triangular Numbers.- 6.6 Cauchy’s Proof.- 7 Analytic Number Theory.- 7.1 Characters.- 7.2 Dirichlet Series.- 7.3 Mangoldt function.- 7.4 L(1,X) ? 0.- 7.5 Dirichlet’s Theorem on Primes in AP.- 7.6 How Many Pythagorean Triangles?.- 7.7 Prime Preliminaries.-7.8 Prime Number Theorem Proof.- 7.9 Partitions.- 7.10 Euler’s Power Series.- 7.11 A Fractal Path of Ford Circles.- 7.12 Möbius Transformations.- 7.13 Dedekind Sums.- 7.14 Eta function.- 7.15 Bessel Functions Avoided.- 7.16 Rademacher’s Proof.- 7.17 Numerical Calculations.- A Appendix: Answers to Selected Exercises.