Pattern Recognition: 32nd DAGM Symposium, Darmstadt, Germany, September 22-24, 2010, Proceedings: Lecture Notes in Computer Science, cartea 6376
Editat de Michael Goesele, Stefan Roth, Arjan Kuijper, Bernt Schiele, Konrad Schindleren Limba Engleză Paperback – 13 sep 2010
Din seria Lecture Notes in Computer Science
- 20% Preț: 1061.55 lei
- 20% Preț: 341.95 lei
- 20% Preț: 369.12 lei
- 20% Preț: 645.28 lei
- 20% Preț: 591.51 lei
- 15% Preț: 580.46 lei
- Preț: 410.88 lei
- 20% Preț: 504.57 lei
- Preț: 381.21 lei
- 20% Preț: 340.32 lei
- 20% Preț: 1414.79 lei
- 20% Preț: 538.29 lei
- 20% Preț: 583.40 lei
- 20% Preț: 1075.26 lei
- 20% Preț: 238.01 lei
- 17% Preț: 360.19 lei
- 20% Preț: 438.69 lei
- 20% Preț: 1183.14 lei
- 20% Preț: 596.46 lei
- 15% Preț: 438.59 lei
- 20% Preț: 655.02 lei
- 20% Preț: 649.49 lei
- 20% Preț: 309.90 lei
- 20% Preț: 337.00 lei
- Preț: 449.57 lei
- 20% Preț: 310.26 lei
- 20% Preț: 1024.44 lei
- 20% Preț: 579.30 lei
- 20% Preț: 763.23 lei
- 20% Preț: 453.32 lei
- 20% Preț: 575.48 lei
- 20% Preț: 585.88 lei
- 20% Preț: 326.98 lei
- 20% Preț: 825.93 lei
- 17% Preț: 427.22 lei
- 20% Preț: 763.23 lei
- 20% Preț: 350.21 lei
- 20% Preț: 307.71 lei
- 20% Preț: 580.93 lei
- 20% Preț: 340.32 lei
- 20% Preț: 343.62 lei
- 20% Preț: 583.40 lei
- 20% Preț: 583.40 lei
- Preț: 389.48 lei
- 20% Preț: 353.50 lei
- 20% Preț: 607.39 lei
Preț: 349.22 lei
Preț vechi: 436.53 lei
-20% Nou
Puncte Express: 524
Preț estimativ în valută:
66.84€ • 69.52$ • 56.01£
66.84€ • 69.52$ • 56.01£
Carte disponibilă
Livrare economică 20 februarie-06 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642159855
ISBN-10: 3642159850
Pagini: 595
Ilustrații: XXI, 574 p. 262 illus.
Greutate: 0.88 kg
Ediția:2010
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Image Processing, Computer Vision, Pattern Recognition, and Graphics
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642159850
Pagini: 595
Ilustrații: XXI, 574 p. 262 illus.
Greutate: 0.88 kg
Ediția:2010
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Image Processing, Computer Vision, Pattern Recognition, and Graphics
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Geometry and Calibration.- 3D Reconstruction Using an n-Layer Heightmap.- Real-Time Dense Geometry from a Handheld Camera.- From Single Cameras to the Camera Network: An Auto-Calibration Framework for Surveillance.- Active Self-calibration of Multi-camera Systems.- Poster Session I.- Optimization on Shape Curves with Application to Specular Stereo.- Unsupervised Facade Segmentation Using Repetitive Patterns.- Image Segmentation with a Statistical Appearance Model and a Generic Mumford-Shah Inspired Outside Model.- Estimating Force Fields of Living Cells – Comparison of Several Regularization Schemes Combined with Automatic Parameter Choice.- Classification of Microorganisms via Raman Spectroscopy Using Gaussian Processes.- Robust Identification of Locally Planar Objects Represented by 2D Point Clouds under Affine Distortions.- Model-Based Recognition of Domino Tiles Using TGraphs.- Slicing the View: Occlusion-Aware View-Based Robot Navigation.- A Contour Matching Algorithm to Reconstruct Ruptured Documents.- Local Structure Analysis by Isotropic Hilbert Transforms.- Complex Motion Models for Simple Optical Flow Estimation.- Tracking People in Broadcast Sports.- A Template-Based Approach for Real-Time Speed-Limit-Sign Recognition on an Embedded System Using GPU Computing.- Inpainting in Multi-image Stereo.- Analysis of Length and Orientation of Microtubules in Wide-Field Fluorescence Microscopy.- Learning Non-stationary System Dynamics Online Using Gaussian Processes.- Computational TMA Analysis and Cell Nucleus Classification of Renal Cell Carcinoma.- Recognition.- Efficient Object Detection Using Orthogonal NMF Descriptor Hierarchies.- VF-SIFT: Very Fast SIFT Feature Matching.- One-Shot Learning of Object Categories Using Dependent Gaussian Processes.- Learning andOptimization.- Uncertainty Driven Multi-scale Optimization.- The Group-Lasso: ?1,??? Regularization versus ?1,2 Regularization.- Random Fourier Approximations for Skewed Multiplicative Histogram Kernels.- Gaussian Mixture Modeling with Gaussian Process Latent Variable Models.- Applications.- Classification of Swimming Microorganisms Motion Patterns in 4D Digital In-Line Holography Data.- Catheter Tracking: Filter-Based vs. Learning-Based.- Exploiting Redundancy for Aerial Image Fusion Using Convex Optimization.- Poster Session II.- A Convex Approach for Variational Super-Resolution.- Incremental Learning in the Energy Minimisation Framework for Interactive Segmentation.- A Model-Based Approach to the Segmentation of Nasal Cavity and Paranasal Sinus Boundaries.- Wavelet-Based Inpainting for Object Removal from Image Series.- An Empirical Comparison of Inference Algorithms for Graphical Models with Higher Order Factors Using OpenGM.- N-View Human Silhouette Segmentation in Cluttered, Partially Changing Environments ,.- Nugget-Cut: A Segmentation Scheme for Spherically- and Elliptically-Shaped 3D Objects.- Benchmarking Stereo Data (Not the Matching Algorithms).- Robust Open-Set Face Recognition for Small-Scale Convenience Applications.- Belief Propagation for Improved Color Assessment in Structured Light.- 3D Object Detection Using a Fast Voxel-Wise Local Spherical Fourier Tensor Transformation.- Matte Super-Resolution for Compositing.- An Improved Histogram of Edge Local Orientations for Sketch-Based Image Retrieval.- A Novel Curvature Estimator for Digital Curves and Images.- Local Regression Based Statistical Model Fitting.- Semi-supervised Learning of Edge Filters for Volumetric Image Segmentation.- Motion.- Geometrically Constrained Level Set Tracking forAutomotive Applications.- Interactive Motion Segmentation.- On-Line Multi-view Forests for Tracking.- Low-Level Vision and Features.- Probabilistic Multi-class Scene Flow Segmentation for Traffic Scenes.- A Stochastic Evaluation of the Contour Strength.- Incremental Computation of Feature Hierarchies.- From Box Filtering to Fast Explicit Diffusion.- Surfaces and Materials.- High-Resolution Object Deformation Reconstruction with Active Range Camera.- Selection of an Optimal Polyhedral Surface Model Using the Minimum Description Length Principle.- Learning of Optimal Illumination for Material Classification.
Caracteristici
Fast-track conference proceedings