Cantitate/Preț
Produs

Perplexing Problems in Probability: Festschrift in Honor of Harry Kesten: Progress in Probability, cartea 44

Editat de Maury Bramson, Richard T. Durrett
en Limba Engleză Paperback – 8 oct 2011

Din seria Progress in Probability

Preț: 39198 lei

Nou

Puncte Express: 588

Preț estimativ în valută:
7507 7735$ 6289£

Carte tipărită la comandă

Livrare economică 24 februarie-10 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781461274421
ISBN-10: 1461274427
Pagini: 412
Ilustrații: 398 p.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.58 kg
Ediția:Softcover reprint of the original 1st ed. 1999
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Progress in Probability

Locul publicării:Boston, MA, United States

Public țintă

Research

Cuprins

1 Harry Kesten’s Publications: A Personal Perspective.- 2 Lattice Trees, Percolation and Super-Brownian Motion.- 3 Percolation in ? + 1 Dimensions at the Uniqueness Threshold.- 4 Percolation on Transitive Graphs as a Coalescent Process: Relentless Merging Followed by Simultaneous Uniqueness.- 5 Inequalities and Entanglements for Percolation and Random-Cluster Models.- 6 From Greedy Lattice Animals to Euclidean First-Passage Percolation.- 7 Reverse Shapes in First-Passage Percolation and Related Growth Models.- 8 Double Behavior of Critical First-Passage Percolation.- 9 The van den Berg-Kesten-Reimer Inequality: A Review.- 10 Large Scale Degrees and the Number of Spanning Clusters for the Uniform Spanning Tree.- 11 On the Absence of Phase Transition in the Monomer-Dimer Model.- 12 Loop-Erased Random Walk.- 13 Dominance of the Sum over the Maximum and Some New Classes of Stochastic Compactness.- 14 Stability and Heavy Traffic Limits for Queueing Networks.- 15 Rescaled Particle Systems Converging to Super-Brownian Motion.- 16 The Hausdorff Measure of the Range of Super-Brownian Motion.- 17 Branching Random Walks on Finite Trees.- 18 Toom’s Stability Theorem in Continuous Time.- 19 The Role of Explicit Space in Plant Competition Models.- 20 Large Deviations for Interacting Particle Systems.- 21 The Gibbs Conditioning Principle for Markov Chains.