Probability in Banach Spaces, 9: Progress in Probability, cartea 35
Editat de Jorgen Hoffmann-Jorgensen, James Kuelbs, Michael B. Marcusen Limba Engleză Hardback – aug 1994
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 951.47 lei 6-8 săpt. | |
Birkhäuser Boston – 12 oct 2012 | 951.47 lei 6-8 săpt. | |
Hardback (1) | 957.62 lei 6-8 săpt. | |
Birkhäuser Boston – aug 1994 | 957.62 lei 6-8 săpt. |
Din seria Progress in Probability
- 15% Preț: 580.46 lei
- Preț: 392.97 lei
- 15% Preț: 523.39 lei
- 15% Preț: 451.16 lei
- Preț: 389.49 lei
- Preț: 383.33 lei
- Preț: 388.13 lei
- Preț: 387.75 lei
- Preț: 393.52 lei
- Preț: 383.50 lei
- 15% Preț: 649.06 lei
- 15% Preț: 590.63 lei
- Preț: 387.75 lei
- Preț: 388.72 lei
- 15% Preț: 588.00 lei
- Preț: 402.00 lei
- Preț: 395.63 lei
- Preț: 391.79 lei
- Preț: 389.70 lei
- 15% Preț: 642.51 lei
- Preț: 391.99 lei
- 15% Preț: 655.45 lei
- 15% Preț: 644.82 lei
- Preț: 397.01 lei
- 18% Preț: 961.72 lei
- 15% Preț: 651.02 lei
- Preț: 385.62 lei
- 15% Preț: 646.43 lei
- Preț: 397.01 lei
- Preț: 402.00 lei
- 15% Preț: 638.76 lei
- Preț: 388.90 lei
- Preț: 399.12 lei
- 15% Preț: 634.32 lei
- Preț: 400.65 lei
- 15% Preț: 646.75 lei
Preț: 957.62 lei
Preț vechi: 1167.83 lei
-18% Nou
Puncte Express: 1436
Preț estimativ în valută:
183.27€ • 190.83$ • 154.88£
183.27€ • 190.83$ • 154.88£
Carte tipărită la comandă
Livrare economică 10-24 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780817637446
ISBN-10: 0817637443
Pagini: 431
Ilustrații: VII, 431 p.
Dimensiuni: 155 x 235 x 25 mm
Greutate: 0.79 kg
Ediția:1994
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Progress in Probability
Locul publicării:Boston, MA, United States
ISBN-10: 0817637443
Pagini: 431
Ilustrații: VII, 431 p.
Dimensiuni: 155 x 235 x 25 mm
Greutate: 0.79 kg
Ediția:1994
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Progress in Probability
Locul publicării:Boston, MA, United States
Public țintă
ResearchCuprins
Random Series, Exponential Moments, and Martingales.- Convergence a.s. of rearranged random series in Banach space and associated inequalities.- On the Rademacher series.- On separability of families of reversed submartingales.- Sharp exponential inequalities for the Martingales in the 2-smooth Banach spaces and applications to “scalarizing” decoupling.- Strong Limit Theorems.- Random fractals generated by oscillations of processes with stationary and independent increments.- Some generalized Martingales arising from the strong law of large numbers.- Uniform ergodic theorems for dynamical systems under VC entropy conditions.- GB and GC sets in ergodic theory.- Weak Convergence.- On the central limit theorem for multiparameter stochastic processes.- Une caractérisation des espaces de Fréchet nucléaires.- A weighted central limit theorem for a function-indexed sum with random point masses.- On the rate of convergence in the CLT with respect to the Kantorovich metric.- Burgers’ topology on random point measures.- On the topological description of characteristic functionals in infinite dimensional spaces.- Large Deviations and Measure Inequalities.- Projective systems in large deviation theory II: some applications.- Some large deviation results for Gaussian measures.- A remark on the median and the expectation of convex functions of Gaussian vectors.- Comparison results for the small ball behavior of Gaussian random variables.- Some remarks on the Berg-Kesten inequality.- Gaussian Chaos and Wiener Measures.- On Girsanov type theorem for anticipative shifts.- A necessary condition for the continuity of linear functionals of Wick squares.- Multiple Wiener-Itô integral processes with sample paths in Banach function spaces.- A remark on Sudakov minoration for chaos.-Topics in Empirical Processes, Spacing Estimates, and Applications to Maximum Likelihood Theory.- On the weak Bahadur-Kiefer representation for M-estimators.- Stochastic differentiability in maximum likelihood theory.- A uniform law of large numbers for set-indexed processes with applications to empirical and partial-sum processes.- Bahadur-Kiefer approximation for spatial quantiles.- Maximum spacing estimates: a generalization and improvement on maximum likelihood estimates I.