Phase Transitions and Self-Organization in Electronic and Molecular Networks: Fundamental Materials Research
Editat de J.C. Phillips, M. F. Thorpeen Limba Engleză Hardback – 31 iul 2001
The second focus is on partly disordered electronic materials whose phase properties exhibit the same remarkable features. In fact, the phenomenon of High Temperature Superconductivity, discovered by Bednorz and Mueller in 1986, and now the subject of 75,000 research papers, also arises from such an intermediate phase. More recently discovered electronic phenomena, such as giant magnetoresistance, also are made possible only by the existence of such special phases.
This book gives an overview of the methods and results obtained so far by studying the characteristics and properties of nanoscale self-organized networks. It demonstrates the universality of the network approach over a range of disciplines, from protein folding to the newest electronic materials.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 933.40 lei 6-8 săpt. | |
Springer Us – 6 mai 2013 | 933.40 lei 6-8 săpt. | |
Hardback (1) | 939.61 lei 6-8 săpt. | |
Springer Us – 31 iul 2001 | 939.61 lei 6-8 săpt. |
Preț: 939.61 lei
Preț vechi: 1145.87 lei
-18% Nou
Puncte Express: 1409
Preț estimativ în valută:
179.84€ • 186.93$ • 148.97£
179.84€ • 186.93$ • 148.97£
Carte tipărită la comandă
Livrare economică 04-18 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780306465680
ISBN-10: 030646568X
Pagini: 454
Ilustrații: XI, 454 p.
Dimensiuni: 178 x 254 x 25 mm
Greutate: 0.84 kg
Ediția:2001
Editura: Springer Us
Colecția Springer
Seria Fundamental Materials Research
Locul publicării:New York, NY, United States
ISBN-10: 030646568X
Pagini: 454
Ilustrații: XI, 454 p.
Dimensiuni: 178 x 254 x 25 mm
Greutate: 0.84 kg
Ediția:2001
Editura: Springer Us
Colecția Springer
Seria Fundamental Materials Research
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
Some Mathematics.- Mathematical Principles of Intermediate Phases in Disordered Systems.- Reduced Density Matrices and Correlation Matrix.- The Sixteen-Percent Solution: Critical Volume Fraction for Percolation.- The Intermediate Phase and Self-organization in Network Glasses.- Glasses and Supercooled Liquids.- Evidence for the Intermediate Phase in Chalcogenide Glasses.- Thermal Relaxation and Criticality of the Stiffness Transition.- Solidity of Viscous Liquids.- Non-Ergodic Dynamics in Supercooled Liquids.- Network Stiffening and Chemical Ordering in Chalcogenide Glasses: Compositional Trends of Tg in Relation to Structural Information From Solid and Liquid State NMR.- Glass Transition Temperature Variation as a Probe for Network Connectivity.- Floppy Modes Effects in the Thermodynamical Properties of Chalcogenide Glasses.- The Dalton-Maxwell-Pauling Recipe for Window Glass.- Local Bonding, Phase Stability and Interface Properties of Replacement Gate Dielectrics, Including Silicon Oxynitride Alloys and Nitrides, and Film ‘Amphoteric’ Elemental Oxides and Silicates.- Experimental Methods for Local Structure Determination on the Atomic Scale.- Zeolite Instability and Collapse.- Metal-Insulator Transitions.- Thermodynamics and Transport Properties of Interacting Systems with Localized Electrons.- The Metal-Insulator Transition in Doped Semiconductors: Transport Properties and Critical Behavior.- Metal-Insulator Transition in Homogeneously Doped Germanium.- High Temperature Super conductors.- Experimental Evidence for Ferroelastic Nanodomains in HTSC Cuprates and Related Oxides.- Role of Sr Dopants in the Inhomogeneous Ground State of La2-xSrxCuO4.- Universal Phase Diagrams and “Ideal” High Temperature Superconductors: HgBa2CuO4+?.- Coexistence ofSuperconductivity and Weak Ferromagnetism in Eu1.5Ce0.5RuSr2Cu2O10.- Quantum Percolation in High Tc Superconductors.- Superstripes.- Electron Strings in Oxides.- High-Temperature Superconductivity is Charge-Reservoir Superconductivity.- Electronic Inhomogeneities in High-Tc Superconductors Observed by NMR.- Tailoring the Properties of High-Tc and Related Oxides.- Self-Organization in Proteins.- Designing Protein Structures.