Pole Solutions for Flame Front Propagation: Mathematical and Analytical Techniques with Applications to Engineering
Autor Oleg Kupervasseren Limba Engleză Hardback – 21 iul 2015
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 370.94 lei 43-57 zile | |
Springer International Publishing – 15 oct 2016 | 370.94 lei 43-57 zile | |
Hardback (1) | 378.26 lei 43-57 zile | |
Springer International Publishing – 21 iul 2015 | 378.26 lei 43-57 zile |
Preț: 378.26 lei
Nou
Puncte Express: 567
Preț estimativ în valută:
72.39€ • 75.20$ • 60.13£
72.39€ • 75.20$ • 60.13£
Carte tipărită la comandă
Livrare economică 03-17 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783319188447
ISBN-10: 3319188445
Pagini: 115
Ilustrații: XII, 118 p. 37 illus., 10 illus. in color.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.37 kg
Ediția:1st ed. 2015
Editura: Springer International Publishing
Colecția Springer
Seria Mathematical and Analytical Techniques with Applications to Engineering
Locul publicării:Cham, Switzerland
ISBN-10: 3319188445
Pagini: 115
Ilustrații: XII, 118 p. 37 illus., 10 illus. in color.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.37 kg
Ediția:1st ed. 2015
Editura: Springer International Publishing
Colecția Springer
Seria Mathematical and Analytical Techniques with Applications to Engineering
Locul publicării:Cham, Switzerland
Public țintă
ResearchCuprins
Introduction.- Pole-Dynamics in Unstable Front Propagation: The Case of the Channel Geometry.- Using of Pole Dynamics for Stability Analysis of Premixed Flame Fronts: Dynamical Systems Approach in the Complex Plane.- Dynamics and Wrinkling of Radially Propagating Fronts Inferred from Scaling Laws in Channel Geometries.- Laplacian Growth Without Surface Tension in Filtration Combustion: Analytical Pole Solution.- Summary.
Textul de pe ultima copertă
This book deals with solving mathematically the unsteady flame propagation equations. New original mathematical methods for solving complex non-linear equations and investigating their properties are presented. Pole solutions for flame front propagation are developed. Premixed flames and filtration combustion have remarkable properties: the complex nonlinear integro-differential equations for these problems have exact analytical solutions described by the motion of poles in a complex plane. Instead of complex equations, a finite set of ordinary differential equations is applied. These solutions help to investigate analytically and numerically properties of the flame front propagation equations.
Caracteristici
Solves mathematically unsteady flame propagation Describes new original methods for solving complex non-linear equations and investigating their properties Addresses open problems existing in the field of flame front propagation Includes supplementary material: sn.pub/extras