Pole Solutions for Flame Front Propagation: Mathematical and Analytical Techniques with Applications to Engineering
Autor Oleg Kupervasseren Limba Engleză Paperback – 15 oct 2016
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 372.21 lei 6-8 săpt. | |
Springer International Publishing – 15 oct 2016 | 372.21 lei 6-8 săpt. | |
Hardback (1) | 379.54 lei 6-8 săpt. | |
Springer International Publishing – 21 iul 2015 | 379.54 lei 6-8 săpt. |
Preț: 372.21 lei
Nou
Puncte Express: 558
Preț estimativ în valută:
71.27€ • 74.21$ • 59.13£
71.27€ • 74.21$ • 59.13£
Carte tipărită la comandă
Livrare economică 14-28 februarie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783319368818
ISBN-10: 3319368818
Pagini: 128
Ilustrații: XII, 118 p. 37 illus., 10 illus. in color.
Dimensiuni: 155 x 235 x 7 mm
Greutate: 0.19 kg
Ediția:Softcover reprint of the original 1st ed. 2015
Editura: Springer International Publishing
Colecția Springer
Seria Mathematical and Analytical Techniques with Applications to Engineering
Locul publicării:Cham, Switzerland
ISBN-10: 3319368818
Pagini: 128
Ilustrații: XII, 118 p. 37 illus., 10 illus. in color.
Dimensiuni: 155 x 235 x 7 mm
Greutate: 0.19 kg
Ediția:Softcover reprint of the original 1st ed. 2015
Editura: Springer International Publishing
Colecția Springer
Seria Mathematical and Analytical Techniques with Applications to Engineering
Locul publicării:Cham, Switzerland
Cuprins
Introduction.- Pole-Dynamics in Unstable Front Propagation: The Case of the Channel Geometry.- Using of Pole Dynamics for Stability Analysis of Premixed Flame Fronts: Dynamical Systems Approach in the Complex Plane.- Dynamics and Wrinkling of Radially Propagating Fronts Inferred from Scaling Laws in Channel Geometries.- Laplacian Growth Without Surface Tension in Filtration Combustion: Analytical Pole Solution.- Summary.
Textul de pe ultima copertă
This book deals with solving mathematically the unsteady flame propagation equations. New original mathematical methods for solving complex non-linear equations and investigating their properties are presented. Pole solutions for flame front propagation are developed. Premixed flames and filtration combustion have remarkable properties: the complex nonlinear integro-differential equations for these problems have exact analytical solutions described by the motion of poles in a complex plane. Instead of complex equations, a finite set of ordinary differential equations is applied. These solutions help to investigate analytically and numerically properties of the flame front propagation equations.
Caracteristici
Solves mathematically unsteady flame propagation Describes new original methods for solving complex non-linear equations and investigating their properties Addresses open problems existing in the field of flame front propagation Includes supplementary material: sn.pub/extras