Prediction and Inference from Social Networks and Social Media: Lecture Notes in Social Networks
Editat de Jalal Kawash, Nitin Agarwal, Tansel Özyeren Limba Engleză Hardback – 18 mar 2017
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 642.52 lei 6-8 săpt. | |
Springer International Publishing – 18 iul 2018 | 642.52 lei 6-8 săpt. | |
Hardback (1) | 648.76 lei 6-8 săpt. | |
Springer International Publishing – 18 mar 2017 | 648.76 lei 6-8 săpt. |
Din seria Lecture Notes in Social Networks
- 20% Preț: 655.35 lei
- 20% Preț: 990.80 lei
- 18% Preț: 1003.38 lei
- 18% Preț: 917.05 lei
- 20% Preț: 337.52 lei
- 20% Preț: 649.28 lei
- 20% Preț: 996.07 lei
- 15% Preț: 503.83 lei
- 18% Preț: 998.66 lei
- 18% Preț: 728.74 lei
- 20% Preț: 991.60 lei
- 18% Preț: 1106.00 lei
- 20% Preț: 668.57 lei
- 5% Preț: 349.68 lei
- 20% Preț: 339.14 lei
- 20% Preț: 587.59 lei
- 15% Preț: 644.82 lei
- 20% Preț: 628.52 lei
- 15% Preț: 587.72 lei
- 20% Preț: 648.44 lei
- 20% Preț: 570.97 lei
- 20% Preț: 642.52 lei
- 20% Preț: 655.02 lei
- 15% Preț: 643.34 lei
- 20% Preț: 764.43 lei
- 20% Preț: 649.93 lei
- 20% Preț: 649.60 lei
- 20% Preț: 650.08 lei
- 20% Preț: 889.62 lei
- Preț: 389.11 lei
- Preț: 395.09 lei
- 20% Preț: 649.75 lei
- 20% Preț: 924.53 lei
- 20% Preț: 341.95 lei
- 20% Preț: 992.76 lei
- 20% Preț: 934.03 lei
- 15% Preț: 641.03 lei
Preț: 648.76 lei
Preț vechi: 810.96 lei
-20% Nou
Puncte Express: 973
Preț estimativ în valută:
124.15€ • 128.83$ • 103.77£
124.15€ • 128.83$ • 103.77£
Carte tipărită la comandă
Livrare economică 17-31 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783319510484
ISBN-10: 3319510487
Pagini: 209
Ilustrații: IX, 225 p. 82 illus., 54 illus. in color.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.51 kg
Ediția:1st ed. 2017
Editura: Springer International Publishing
Colecția Springer
Seria Lecture Notes in Social Networks
Locul publicării:Cham, Switzerland
ISBN-10: 3319510487
Pagini: 209
Ilustrații: IX, 225 p. 82 illus., 54 illus. in color.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.51 kg
Ediția:1st ed. 2017
Editura: Springer International Publishing
Colecția Springer
Seria Lecture Notes in Social Networks
Locul publicării:Cham, Switzerland
Cuprins
Chapter1. Having Fun?: Personalized Activity-based Mood Prediction in Social Media.- Chapter2. Automatic Medical Image Multilingual Indexation through a Medical Social Network.- Chapter3. The Significant Effect of Overlapping Community Structures in Signed Social Networks.- Chapter4. Extracting Relations Between Symptoms by Age-Frame Based Link Prediction.- Chapter5. Link Prediction by Network Analysis.- Chapter6. Structure-Based Features for Predicting the Quality of Articles in Wikipedia.- Chapter7. Predicting Collective Action from Micro-Blog Data.- Chapter8. Discovery of Structural and Temporal Patterns in MOOC Discussion Forums.- Chapter9. Diffusion Process in a Multi-Dimension Networks: Generating, Modelling and Simulation.
Textul de pe ultima copertă
This book addresses the challenges of social network and social media analysis in terms of prediction and inference. The chapters collected here tackle these issues by proposing new analysis methods and by examining mining methods for the vast amount of social content produced. Social Networks (SNs) have become an integral part of our lives; they are used for leisure, business, government, medical, educational purposes and have attracted billions of users. The challenges that stem from this wide adoption of SNs are vast. These include generating realistic social network topologies, awareness of user activities, topic and trend generation, estimation of user attributes from their social content, and behavior detection. This text has applications to widely used platforms such as Twitter and Facebook and appeals to students, researchers, and professionals in the field.
Caracteristici
Demonstrates new mining techniques and applications for social networking within the fields of prediction and inference Proposes a wide variety of social network research topics Covers a wide variety of case studies and state-of-the-art analysis tools for Facebook and Twitter Includes supplementary material: sn.pub/extras