PRICAI 2022: Trends in Artificial Intelligence: 19th Pacific Rim International Conference on Artificial Intelligence, PRICAI 2022, Shanghai, China, November 10–13, 2022, Proceedings, Part II: Lecture Notes in Computer Science, cartea 13630
Editat de Sankalp Khanna, Jian Cao, Quan Bai, Guandong Xuen Limba Engleză Paperback – 4 noi 2022
The 91 full papers and 39 short papers presented in these volumes were carefully reviewed and selected from 432 submissions. PRICAI covers a wide range of topics in the areas of social and economic importance for countries in the Pacific Rim: artificial intelligence, machine learning, natural language processing, knowledge representation and reasoning, planning and scheduling, computer vision, distributed artificial intelligence, search methodologies, etc.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (3) | 601.92 lei 6-8 săpt. | |
Springer Nature Switzerland – 4 noi 2022 | 601.92 lei 6-8 săpt. | |
Springer Nature Switzerland – 4 noi 2022 | 604.72 lei 6-8 săpt. | |
Springer Nature Switzerland – 4 noi 2022 | 664.11 lei 6-8 săpt. |
Din seria Lecture Notes in Computer Science
- 20% Preț: 1061.55 lei
- 20% Preț: 340.32 lei
- 20% Preț: 341.95 lei
- 20% Preț: 453.32 lei
- 20% Preț: 238.01 lei
- 20% Preț: 340.32 lei
- 20% Preț: 438.69 lei
- Preț: 449.57 lei
- 20% Preț: 343.62 lei
- 20% Preț: 148.66 lei
- 20% Preț: 310.26 lei
- 20% Preț: 256.27 lei
- 20% Preț: 645.28 lei
- 17% Preț: 427.22 lei
- 20% Preț: 655.02 lei
- 20% Preț: 307.71 lei
- 20% Preț: 1075.26 lei
- 20% Preț: 591.51 lei
- Preț: 381.21 lei
- 20% Preț: 337.00 lei
- 15% Preț: 438.59 lei
- 20% Preț: 607.39 lei
- 20% Preț: 538.29 lei
- Preț: 389.48 lei
- 20% Preț: 326.98 lei
- 20% Preț: 1414.79 lei
- 20% Preț: 1024.44 lei
- 20% Preț: 579.30 lei
- 20% Preț: 575.48 lei
- 20% Preț: 583.40 lei
- 20% Preț: 763.23 lei
- 15% Preț: 580.46 lei
- 17% Preț: 360.19 lei
- 20% Preț: 504.57 lei
- 20% Preț: 172.69 lei
- 20% Preț: 369.12 lei
- 20% Preț: 353.50 lei
- 20% Preț: 585.88 lei
- Preț: 410.88 lei
- 20% Preț: 596.46 lei
- 20% Preț: 763.23 lei
- 20% Preț: 825.93 lei
- 20% Preț: 649.49 lei
- 20% Preț: 350.21 lei
- 20% Preț: 309.90 lei
- 20% Preț: 122.89 lei
Preț: 601.92 lei
Preț vechi: 752.40 lei
-20% Nou
Puncte Express: 903
Preț estimativ în valută:
115.20€ • 119.95$ • 97.35£
115.20€ • 119.95$ • 97.35£
Carte tipărită la comandă
Livrare economică 11-25 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783031208645
ISBN-10: 3031208641
Pagini: 546
Ilustrații: XX, 546 p. 143 illus., 133 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.79 kg
Ediția:1st ed. 2022
Editura: Springer Nature Switzerland
Colecția Springer
Seria Lecture Notes in Computer Science
Locul publicării:Cham, Switzerland
ISBN-10: 3031208641
Pagini: 546
Ilustrații: XX, 546 p. 143 illus., 133 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.79 kg
Ediția:1st ed. 2022
Editura: Springer Nature Switzerland
Colecția Springer
Seria Lecture Notes in Computer Science
Locul publicării:Cham, Switzerland
Cuprins
Knowledge Representation and Reasoning.- Moderately-Balanced Representation Learning for Treatment Effects with Orthogonality Information.- Source-Free Implicit Semantic Augmentation for Domain Adaptation.- Role-Oriented Network Embedding Method Based on Local Structural Feature and Commonality.- Dynamic Refining Knowledge Distillation Based on Attention Mechanism.- Entity Representation by Neighboring Relations Topology for Inductive Relation Prediction.- Entity Similarity-based Negative Sampling for Knowledge Graph Embedding.- Label Enhancement using Inter-Example Correlation Information.- Link Prediction via Fused Attribute Features Activation with Graph Convolutional Network.- Multi-Subspace Attention Graph Pooling.- Embedding for Temporal Knowledge Graph Reasoning.- Natural Language Processing.- M2FNet: Multi-granularity Feature Fusion Network for Medical Visual Question Answering.- Noise-robust Semi-supervised Multi-modal Machine Translation.- SETFF: A Semantic Enhanced Table Filling Framework for Joint Entity and Relation Extraction.- PEKIN: Prompt-based External Knowledge Integration Network for Rumor Detection on Social Media.- Entity-aware Social Media Reading Comprehension.- Analysis via Virtual Node Augmented Graph Convolutional Networks.- Bidirectional Macro-level Discourse Parser based on Oracle Selection.- Evidence-Based Document-Level Event Factuality Identification.- Named Entity Recognition Model of Power Equipment Based on Multi-feature Fusion.- Improving Abstractive Multi-document Summarization with Predicate-Argument Structure Extraction.- A Structure-aware Method for Cross-domain Text Classification.- SICM: A Supervised-based Identification and Classification Model for Chinese Jargons Using Feature Adapter Enhanced BERT.- HS2N: Heterogeneous Semantics-Syntax Fusion Network for Document-level Event Factuality Identification.- Pay Attention to the ”Tails”: A Novel Aspect-Fusion Model for Long-Tailed Aspect Category Detection.- Choice-driven Contextual Reasoning for Commonsense Question Answering.- Implicit Discourse Relation Recognition Based on Multi-granularity Context Fusion Mechanism.- Chinese Medical Named Entity Recognition Using External Knowledge.- Neural Networks and Deep Learning.- Trajectory Prediction With Heterogeneous Graph Neural Network.- EEF1-NN: Efficient and EF1 allocations through Neural Networks.- Weighted Adaptive Perturbations Adversarial Training for Improving Robustness.- Improved Network Pruning via Similarity-Based Regularization.- Dynamic-GTN: Learning an Node Efficient Embedding in Dynamic Graph with Transformer.- ICDT: Incremental Context Guided Deliberation Transformer for Image Captioning.- Semantic-Adversarial Graph Convolutional Network for Zero-shot Cross-modal Retrieval.- DAST: Depth-Aware Assessment and Synthesis Transformer for RGB-D Salient Object Detection.- A Vehicle Re-ID Algorithm Based on Channel Correlation Self-Attention and Lstm Local Information Loss.- A Self-Supervised Graph Autoencoder with Barlow Twins.- Few-shot Image Classification Method Based on Fusion of Important Features of Different Scales.- Group Residual Dense Block for Key-Point Detector with One-level Feature.