Probabilistic Graphical Models: Principles and Applications: Advances in Computer Vision and Pattern Recognition
Autor Luis Enrique Sucaren Limba Engleză Paperback – 9 oct 2016
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (2) | 288.35 lei 38-44 zile | |
SPRINGER LONDON – 9 oct 2016 | 288.35 lei 38-44 zile | |
Springer International Publishing – 24 dec 2021 | 329.91 lei 6-8 săpt. | |
Hardback (1) | 419.85 lei 6-8 săpt. | |
Springer International Publishing – 24 dec 2020 | 419.85 lei 6-8 săpt. |
Din seria Advances in Computer Vision and Pattern Recognition
- 20% Preț: 1062.19 lei
- 20% Preț: 759.60 lei
- 20% Preț: 978.13 lei
- 20% Preț: 646.47 lei
- 20% Preț: 464.09 lei
- 20% Preț: 867.10 lei
- 20% Preț: 241.86 lei
- 20% Preț: 641.45 lei
- 20% Preț: 334.74 lei
- 20% Preț: 631.62 lei
- 20% Preț: 636.92 lei
- 20% Preț: 321.99 lei
- 20% Preț: 633.72 lei
- 20% Preț: 639.35 lei
- 20% Preț: 973.47 lei
- 20% Preț: 1151.09 lei
- 20% Preț: 633.72 lei
- 20% Preț: 658.76 lei
- 20% Preț: 1142.87 lei
- 20% Preț: 901.68 lei
- 20% Preț: 809.07 lei
- 18% Preț: 934.33 lei
- 20% Preț: 979.08 lei
- 20% Preț: 641.78 lei
- 20% Preț: 595.12 lei
- 20% Preț: 634.50 lei
- 20% Preț: 645.02 lei
- 20% Preț: 1616.12 lei
- 20% Preț: 971.36 lei
- 20% Preț: 973.92 lei
- 20% Preț: 1041.03 lei
- 20% Preț: 965.20 lei
- 20% Preț: 627.42 lei
- 20% Preț: 642.77 lei
- 20% Preț: 653.10 lei
- 18% Preț: 931.26 lei
- 20% Preț: 639.21 lei
- 20% Preț: 631.75 lei
Preț: 288.35 lei
Preț vechi: 360.44 lei
-20% Nou
Puncte Express: 433
Preț estimativ în valută:
55.18€ • 58.18$ • 45.94£
55.18€ • 58.18$ • 45.94£
Carte tipărită la comandă
Livrare economică 07-13 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781447170549
ISBN-10: 1447170547
Pagini: 277
Ilustrații: XXIV, 253 p. 117 illus., 4 illus. in color.
Dimensiuni: 155 x 235 x 22 mm
Ediția:Softcover reprint of the original 1st ed. 2015
Editura: SPRINGER LONDON
Colecția Springer
Seria Advances in Computer Vision and Pattern Recognition
Locul publicării:London, United Kingdom
ISBN-10: 1447170547
Pagini: 277
Ilustrații: XXIV, 253 p. 117 illus., 4 illus. in color.
Dimensiuni: 155 x 235 x 22 mm
Ediția:Softcover reprint of the original 1st ed. 2015
Editura: SPRINGER LONDON
Colecția Springer
Seria Advances in Computer Vision and Pattern Recognition
Locul publicării:London, United Kingdom
Cuprins
Part I: Fundamentals.- Introduction.- Probability Theory.- Graph Theory.- Part II: Probabilistic Models.- Bayesian Classifiers.- Hidden Markov Models.- Markov Random Fields.- Bayesian Networks: Representation and Inference.- Bayesian Networks: Learning.- Dynamic and Temporal Bayesian Networks.- Part III: Decision Models.- Decision Graphs.- Markov Decision Processes.- Part IV: Relational and Causal Models.- Relational Probabilistic Graphical Models.- Graphical Causal Models.
Textul de pe ultima copertă
This accessible text/reference provides a general introduction to probabilistic graphical models (PGMs) from an engineering perspective.
The book covers the fundamentals for each of the main classes of PGMs, including representation, inference and learning principles, and reviews real-world applications for each type of model. These applications are drawn from a broad range of disciplines, highlighting the many uses of Bayesian classifiers, hidden Markov models, Bayesian networks, dynamic and temporal Bayesian networks, Markov random fields, influence diagrams, and Markov decision processes.
Topics and features:
Dr. Luis Enrique Sucar is a Senior Research Scientist at the National Institute for Astrophysics, Optics and Electronics (INAOE), Puebla, Mexico.
The book covers the fundamentals for each of the main classes of PGMs, including representation, inference and learning principles, and reviews real-world applications for each type of model. These applications are drawn from a broad range of disciplines, highlighting the many uses of Bayesian classifiers, hidden Markov models, Bayesian networks, dynamic and temporal Bayesian networks, Markov random fields, influence diagrams, and Markov decision processes.
Topics and features:
- Presents a unified framework encompassing all of the main classes of PGMs
- Explores the fundamental aspects of representation, inference and learning for each technique
- Describes the practical application of the different techniques
- Examines the latest developments in the field, covering multidimensional Bayesian classifiers, relational graphical models and causal models
- Provides exercises, suggestions for further reading, and ideas for research or programming projects at the end of each chapter
- Suggests possible course outlines for instructors in the preface
Dr. Luis Enrique Sucar is a Senior Research Scientist at the National Institute for Astrophysics, Optics and Electronics (INAOE), Puebla, Mexico.
Caracteristici
Includes exercises, suggestions for research projects, and example applications throughout the book Presents the main classes of PGMs under a single, unified framework Covers both the fundamental aspects and some of the latest developments in the field Includes supplementary material: sn.pub/extras
Notă biografică
Dr. Luis Enrique Sucar is a Senior Research Scientist in the Department of Computing at the National Institute of Astrophysics, Optics and Electronics (INAOE), Mexico.