Cantitate/Preț
Produs

Quantum Theory of Many-Body Systems: Techniques and Applications: Graduate Texts in Contemporary Physics

Autor Alexandre Zagoskin
en Limba Engleză Paperback – 17 oct 2012
Intended for graduate students in physics and related fields, this text is a self contained treatment of the physics of many-body systems from the point of view of condensed matter. The approach, quite traditionally, uses the mathematical formalism of quasiparticles and Green's functions. In particular, it covers all the important diagram techniques for normal and superconducting systems, including the zero- temperature perturbation theory, and the Matsubara, Keldysh, and Nambu -Gor'kov formalisms. The aim is not to be exhaustive, but to present just enough detail to enable the student to follow the current research literature or to apply the techniques to new problems. Many of the examples are drawn from mesoscopic physics, which deals with systems small enough that quantum coherence is maintained throughout their volume, and which therefore provides an ideal testing ground for many-body theories. The book begins by introducing the Green's function for one-particle systems (using Feynman path integrals), general perturbation theory, and second quantization. It then turns to the usual zero-temperature formalism, discussing the properties and physical meaning of the Green's function for many-body systems and then developing the diagram techniques of perturbation theory. The theory is extended to finite temperatures, including a discussion of the Matsubara formalism as well as the Keldysh technique for essentially nonequilibrium systems. The final chapter is devoted to applications of the techniques to superconductivity, incuding discussions of the superconducting phase transition, elementary excitations, transport, Andreev reflections, and Josephson junctions. Problems at the end of each chapter help to guide learning an to
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (2) 37299 lei  39-44 zile
  Springer International Publishing – 10 sep 2016 37299 lei  39-44 zile
  Springer – 17 oct 2012 38547 lei  6-8 săpt.
Hardback (1) 46008 lei  39-44 zile
  Springer International Publishing – 11 iul 2014 46008 lei  39-44 zile

Din seria Graduate Texts in Contemporary Physics

Preț: 38547 lei

Nou

Puncte Express: 578

Preț estimativ în valută:
7377 7711$ 6233£

Carte tipărită la comandă

Livrare economică 06-20 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781461268314
ISBN-10: 1461268311
Pagini: 248
Ilustrații: XV, 229 p.
Dimensiuni: 155 x 235 x 13 mm
Greutate: 0.35 kg
Ediția:Softcover reprint of the original 1st ed. 1998
Editura: Springer
Colecția Springer
Seria Graduate Texts in Contemporary Physics

Locul publicării:New York, NY, United States

Public țintă

Graduate

Cuprins

1 Basic Concepts.- 1.1 Introduction: Whys and Hows of Quantum Many-Body Theory.- 1.2 Propagation Function in a One-Body Quantum Theory.- 1.3 Perturbation Theory for the Propagator.- 1.4 Second Quantization.- 1.5 Problems to Chapter 1.- 2 Green’s Functions at Zero Temperature.- 2.1 Green’s Function of The Many-Body System: Definition and Properties.- 2.2 Perturbation Theory: Feynman Diagrams.- 2.3 Problems to Chapter 2.- 3 More Green’s Functions, Equilibrium and Otherwise, and Their Applications.- 3.1 Analytic Properties of Equilibrium Green’s Functions.- 3.2 Matsubara formalism.- 3.3 Linear Response Theory.- 3.4 Nonequilibrium Green’s Functions.- 3.5 Quantum Kinetic Equation.- 3.6 Application: Electrical Conductivity of Quantum Point Contacts.- 3.7 Method of Tunneling Hamiltonian.- 3.8 Problems to Chapter 3.- 4 Methods of the Many-Body Theory in Superconductivity.- 4.1 Introduction: General Picture of the Superconducting State.- 4.2 Instability of the Normal State.- 4.3 Pairing (BCS) Hamiltonian.- 4.4 Green’s Functions of a Superconductor: The Nambu—Gor’kov Formalism.- 4.5 Andreev Reflection.- 4.6 Tunneling of Single Electrons and Cooper Pairs.- 4.7 Problems to Chapter 4.- A Landauer Formalism for Hybrid Normal-Superconducting.- Structures.- A.1 The Landauer—Lambert formula.- A.2 Giant Conductance Oscillations in Ballistic Andreev Interferometers.- References.

Caracteristici

Uses the traditional mathematical formalism of quasiparticles and Green`s functions. Covers all the important diagram techniques for normal and superconducting systems, including the zero-temperature perturbation theory, and the Matsubara, Keldysh, and Nambu-Gorov formalisms. Presents enough detail to enable the reader to follow the current research literature or to apply the techniques to new problems. Includes many of the examples drawn from mesoscopic physics, which provides an ideal testing ground for many-body theories. Includes applications of the techniques. Problems at the end of each chapter help to guide learning and illustrate the applications.

Notă biografică

Alexandre Zagoskin is Reader in Quantum Physics in the Department of Physics at Loughborough University. In his career, he has published over 90 articles in refereed journals, 2 books (including the first edition of Quantum Theory of Many-Body Systems [Springer, 978-0-387-98384-4, 1998]), and 23 patents. He is Fellow of the Institute of Physics (FInstP) UK.


Textul de pe ultima copertă

This text presents a self-contained treatment of the physics of many-body systems from the point of view of condensed matter. The approach, quite traditionally, uses the mathematical formalism of quasiparticles and Green’s functions. In particular, it covers all the important diagram techniques for normal and superconducting systems, including the zero-temperature perturbation theory and the Matsubara, Keldysh and Nambu-Gor'kov formalism, as well as an introduction to Feynman path integrals.
This new edition contains an introduction to the methods of theory of one-dimensional systems (bosonization and conformal field theory) and their applications to many-body problems.  
Intended for graduate students in physics and related fields, the aim is not to be exhaustive, but to present enough detail to enable the student to follow the current research literature, or to apply the techniques to new problems. Many of the examples are drawn from mesoscopic physics, which deals with systems small enough that quantum coherence is maintained throughout their volume, and which therefore provides an ideal testing ground for many-body theories.


Descriere

Descriere de la o altă ediție sau format:

This text presents a self-contained treatment of the physics of many-body systems from the point of view of condensed matter. The approach, quite traditionally, uses the mathematical formalism of quasiparticles and Green’s functions. In particular, it covers all the important diagram techniques for normal and superconducting systems, including the zero-temperature perturbation theory and the Matsubara, Keldysh and Nambu-Gor'kov formalism, as well as an introduction to Feynman path integrals.
This new edition contains an introduction to the methods of theory of one-dimensional systems (bosonization and conformal field theory) and their applications to many-body problems.
Intended for graduate students in physics and related fields, the aim is not to be exhaustive, but to present enough detail to enable the student to follow the current research literature, or to apply the techniques to new problems. Many of the examples are drawn from mesoscopic physics, which deals with systems small enough that quantum coherence is maintained throughout their volume and which therefore provides an ideal testing ground for many-body theories.