Cantitate/Preț
Produs

The Physics of Quantum Fields: Graduate Texts in Contemporary Physics

Autor Michael Stone
en Limba Engleză Hardback – 28 dec 1999
This book is intended to provide a general introduction to the physics of quantized fields and many-body physics. It is based on a two-semester sequence of courses taught at the University of Illinois at Urbana-Champaign at various times between 1985 and 1997. The students taking all or part of the sequence had interests ranging from particle and nuclear theory through quantum optics to condensed matter physics experiment. The book does not cover as much ground as some texts. This is because I have tried to concentrate on the basic conceptual issues that many students find difficult. For a computation-method oriented course an instructor would probably wish to suplement this book with a more comprehensive and specialized text such as Peskin and Schroeder An Introduction to Quantum Field Theory, which is intended for particle theorists, or perhaps the venerable Quantum Theory of Many-Particle Systems by Fetter and Walecka. The most natural distribution of the material if the book is used for a two-semster course is as follows: 1 st Semester: Chapters 1-11. 2nd semester: Chapters 12-18.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 37996 lei  6-8 săpt.
  Springer – 4 oct 2012 37996 lei  6-8 săpt.
Hardback (1) 38677 lei  6-8 săpt.
  Springer – 28 dec 1999 38677 lei  6-8 săpt.

Din seria Graduate Texts in Contemporary Physics

Preț: 38677 lei

Nou

Puncte Express: 580

Preț estimativ în valută:
7404 7696$ 6139£

Carte tipărită la comandă

Livrare economică 05-19 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780387989099
ISBN-10: 0387989099
Pagini: 271
Ilustrații: XIV, 271 p.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.57 kg
Ediția:2000
Editura: Springer
Colecția Springer
Seria Graduate Texts in Contemporary Physics

Locul publicării:New York, NY, United States

Public țintă

Graduate

Cuprins

1 Discrete Systems.- 1.1 One-Dimensional Harmonic Crystal.- 1.2 Continuum Limit.- 2 Relativistic Scalar Fields.- 2.1 Conventions.- 2.2 The Klein-Gordon Equation.- 2.3 Symmetries and Noether’s Theorem.- 3 Perturbation Theory.- 3.1 Interactions.- 3.2 Perturbation Theory.- 3.3 Wick’s Theorem.- 4 Feynman Rules.- 4.1 Diagrams.- 4.2 Scattering Theory.- 5 Loops, Unitarity, and Analyticity.- 5.1 Unitarity of the S Matrix.- 5.2 The Analytic S Matrix.- 5.3 Some Loop Diagrams.- 6 Formal Developments.- 6.1 Gell-Mann Low Theorem.- 6.2 Lehmann-Källén Spectral Representation.- 6.3 LSZ Reduction Formulae.- 7 Fermions.- 7.1 Dirac Equation.- 7.2 Spinors, Tensors, and Currents.- 7.3 Holes and the Dirac Sea.- 7.4 Quantization.- 8 QED.- 8.1 Quantizing Maxwell’s Equations.- 8.2 Feynman Rules for QED.- 8.3 Ward Identity and Gauge Invariance.- 9 Electrons in Solids.- 9.1 Second Quantization.- 9.2 Fermi Gas and Fermi Liquid.- 9.3 Electrons and Phonons.- 10 Nonrelativistic Bosons.- 10.1 The Boson Field.- 10.2 Spontaneous Symmetry Breaking.- 10.3 Dilute Bose Gas.- 10.4 Charged Bosons.- 11 Finite Temperature.- 11.1 Partition Functions.- 11.2 Worldlines.- 11.3 Matsubara Sums.- 12 Path Integrals.- 12.1 Quantum Mechanics of a Particle.- 12.2 Gauge Invariance and Operator Ordering.- 12.3 Correlation Functions.- 12.4 Fields.- 12.5 Gaussian Integrals and Free Fields.- 12.6 Perturbation Theory.- 13 Functional Methods.- 13.1 Generating Functionals.- 13.2 Ward Identities.- 14 Path Integrals for Fermions.- 14.1 Berezin Integrals.- 14.2 Fermionic Coherent States.- 14.3 Superconductors.- 15 Lattice Field Theory.- 15.1 Boson Fields.- 15.2 Random Walks.- 15.3 Interactions and Bose Condensation.- 15.4 Lattice Fermions.- 16 The Renormalization Group.- 16.1 Transfer Matrices.- 16.2 Block Spins and Renormalization Group.- 17 Fields and Renormalization.- 17.1 The Free-Field Fixed Point.- 17.2 The Gaussian Model.- 17.3 General Method.- 17.4 Nonlinear ? Model.- 17.5 Renormalizing ??4.- 18 Large N Expansions.- 18.1O(N) Linear ?-Model.- 18.2 Large N Expansions.- A Relativistic State Normalization.- B The General Commutator.- C Dimensional Regularization.- C.1 Analytic Continuation and Integrals.- C.2 Propagators.- D Spinors and the Principle of the Sextant.- D.1 Constructing the ?-Matrices.- D.2 Basic Theorem.- D.3 Chirality.- E Indefinite Metric.- F Phonons and Momentum.- G Determinants in Quantum Mechanics.