Cantitate/Preț
Produs

Quantum Trajectories and Measurements in Continuous Time: The Diffusive Case: Lecture Notes in Physics, cartea 782

Autor Alberto Barchielli, Matteo Gregoratti
en Limba Engleză Paperback – 29 noi 2011
Quantum trajectory theory is largely employed in theoretical quantum optics and quantum open system theory and is closely related to the conceptual formalism of quantum mechanics (quantum measurement theory). However, even research articles show that not all the features of the theory are well known or completely exploited. We wrote this monograph mainly for researchers in theoretical quantum optics and related ?elds with the aim of giving a self-contained and solid p- sentation of a part of quantum trajectory theory (the diffusive case) together with some signi?cant applications (mainly with purposes of illustration of the theory, but which in part have been recently developed). Another aim of the monograph is to introduce to this subject post-graduate or PhD students. To help them, in the most mathematical and conceptual chapters, summaries are given to ?x ideas. Moreover, as stochastic calculus is usually not in the background of the studies in physics, we added Appendix A to introduce these concepts. The book is written also for ma- ematicians with interests in quantum theories. Quantum trajectory theory is a piece of modern theoretical physics which needs an interplay of various mathematical subjects, such as functional analysis and probability theory (stochastic calculus), and offers to mathematicians a beautiful ?eld for applications, giving suggestions for new mathematical developments.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 58605 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 29 noi 2011 58605 lei  6-8 săpt.
Hardback (1) 59244 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 22 iul 2009 59244 lei  6-8 săpt.

Din seria Lecture Notes in Physics

Preț: 58605 lei

Preț vechi: 68947 lei
-15% Nou

Puncte Express: 879

Preț estimativ în valută:
11215 11694$ 9321£

Carte tipărită la comandă

Livrare economică 21 martie-04 aprilie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783642242489
ISBN-10: 3642242480
Pagini: 340
Ilustrații: XIV, 325 p. 30 illus.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.48 kg
Ediția:2009
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Physics

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

I General theory.- The Stochastic Schr#x00F6;dinger Equation.- The Stochastic Master Equation: Part I.- Continuous Measurements and Instruments.- The Stochastic Master Equation: Part II.- Mutual Entropies and Information Gain in Quantum Continuous Measurements.- II Physical applications.- Quantum Optical Systems.- A Two-Level Atom: General Setup.- A Two-Level Atom: Heterodyne and Homodyne Spectra.- Feedback.

Recenzii

From the reviews:
“This quite interesting book is devoted to the theory of continuous measurements in quantum mechanics. … aimed at both mathematicians and physicists, keeping together mathematical rigor and physical motivation. … The presentation ends with two very well written and useful appendixes, providing a brief and self-contained introduction to stochastic differential equations as well as the general formulation of quantum mechanics. … these two appendixes are meant to help the physicists or the mathematicians which are not confident with the formalism or the physical interpretation, respectively.” (Bassano Vacchini, Zentralblatt MATH, Vol. 1182, 2010)
“This monograph is intended principally for researchers in theoretical quantum optics and related fields. … The book is well structured and the presentation is excellent. The mathematics is developed rigorously and without compromise: the physical interpretation is always kept to the fore. … Anyone interested in quantum trajectory theory will find this work a most useful introduction.” (Alexander C. R. Belton, Mathematical Reviews, January, 2013)

Textul de pe ultima copertă

This course-based monograph introduces the reader to the theory of continuous measurements in quantum mechanics and provides some benchmark applications.
The approach chosen, quantum trajectory theory, is based on the stochastic Schrödinger and master equations, which determine the evolution of the a-posteriori state of a continuously observed quantum system and give the distribution of the measurement output. The present introduction is restricted to finite-dimensional quantum systems and diffusive outputs. Two appendices introduce the tools of probability theory and quantum measurement theory which are needed for the theoretical developments in the first part of the book.
First, the basic equations of quantum trajectory theory are introduced, with all their mathematical properties, starting from the existence and uniqueness of their solutions. This makes the text also suitable for other applications of the same stochastic differential equations in different fields such as simulations of master equations or dynamical reduction theories.
In the next step the equivalence between the stochastic approach and the theory of continuous measurements is demonstrated.
To conclude the theoretical exposition, the properties of the output of the continuous measurement are analyzed in detail. This is a stochastic process with its own distribution, and the reader will learn how to compute physical quantities such as its moments and its spectrum. In particular this last concept is introduced with clear and explicit reference to the measurement process.
The two-level atom is used as the basic prototype to illustrate the theory in a concrete application. Quantum phenomena appearing in the spectrum of the fluorescence light, such as Mollow’s triplet structure, squeezing of the fluorescence light, and the linewidth narrowing, are presented.
Last but not least, the theory of quantum continuous measurements is the natural starting pointto develop a feedback control theory in continuous time for quantum systems. The two-level atom is again used to introduce and study an example of feedback based on the observed output.

Caracteristici

Includes supplementary material: sn.pub/extras