Random Matrices and Non-Commutative Probability
Autor Arup Boseen Limba Engleză Hardback – 27 oct 2021
- Combinatorial properties of non-crossing partitions, including the Möbius function play a central role in introducing free probability.
- Free independence is defined via free cumulants in analogy with the way classical independence can be defined via classical cumulants.
- Free cumulants are introduced through the Möbius function.
- Free product probability spaces are constructed using free cumulants.
- Marginal and joint tracial convergence of large dimensional random matrices such as the Wigner, elliptic, sample covariance, cross-covariance, Toeplitz, Circulant and Hankel are discussed.
- Convergence of the empirical spectral distribution is discussed for symmetric matrices.
- Asymptotic freeness results for random matrices, including some recent ones, are discussed in detail. These clarify the structure of the limits for joint convergence of random matrices.
- Asymptotic freeness of independent sample covariance matrices is also demonstrated via embedding into Wigner matrices.
- Exercises, at advanced undergraduate and graduate level, are provided in each chapter.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 439.24 lei 6-8 săpt. | |
CRC Press – 29 ian 2024 | 439.24 lei 6-8 săpt. | |
Hardback (1) | 1093.26 lei 6-8 săpt. | |
CRC Press – 27 oct 2021 | 1093.26 lei 6-8 săpt. |
Preț: 1093.26 lei
Preț vechi: 1333.24 lei
-18% Nou
Puncte Express: 1640
Preț estimativ în valută:
209.29€ • 217.55$ • 173.53£
209.29€ • 217.55$ • 173.53£
Carte tipărită la comandă
Livrare economică 07-21 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780367700812
ISBN-10: 0367700816
Pagini: 286
Ilustrații: 1 Tables, black and white
Dimensiuni: 156 x 234 x 21 mm
Greutate: 0.54 kg
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC
ISBN-10: 0367700816
Pagini: 286
Ilustrații: 1 Tables, black and white
Dimensiuni: 156 x 234 x 21 mm
Greutate: 0.54 kg
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC
Cuprins
- Classical independence, moments and cumulants. 2. Non-commutative probability. 3. Free independence. 4. Convergence. 5. Transforms. 6. C* -probability space. 7. Random matrices. 8. Convergence of some important matrices. 9. Joint convergence I: single pattern. 10. Joint convergence II: multiple patterns. 11. Asymptotic freeness of random matrices. 12. Brown measure. 13. Tying three loose ends.
Notă biografică
Arup Bose is on the faculty of the Theoretical Statistics and Mathematics Unit, Indian Statistical Institute, Kolkata, India. He has research contributions in statistics, probability, economics and econometrics. He is a Fellow of the Institute of Mathematical Statistics (USA), and of all three national science academies of India. He is a recipient of the S.S. Bhatnagar Prize and the C.R. Rao Award and holds a J.C.Bose National Fellowship. He has been on the editorial board of several journals. He has authored four books: Patterned Random Matrices, Large Covariance and Autocovariance Matrices (with Monika Bhattacharjee), U-Statistics, Mm-Estimators and Resampling (with Snigdhansu Chatterjee) and Random Circulant Matrices (with Koushik Saha).
Descriere
Free Probability/Non-commutative Probability has gained much attentionsignificant advances have been made since its initiation in the 1990’s. Though it started as a branch of Mathematics, it has found significant applications in statistics, wireless communication etc, particularly through deep and interesting connections with Random Matrix Theory.